Electromagnetic Compatibility of Electric Vehicle
Title | Electromagnetic Compatibility of Electric Vehicle PDF eBook |
Author | Li Zhai |
Publisher | Springer Nature |
Pages | 447 |
Release | 2021-01-30 |
Genre | Technology & Engineering |
ISBN | 9813361654 |
This book introduces the electromagnetic compatibility(EMC) of electric vehicle(EV), including EMC of the whole vehicle, electromagnetic interference(EMI) prediction and suppression of motor drive system, EMI prediction and suppression of DC-DC converter, electromagnetic field safety and EMC of wireless charging system, signal integrity and EMC of the vehicle controller unit(VCU), EMC of battery management system(BMS), electromagnetic radiated emission diagnosis and suppression of the whole vehicle, etc. The analysis method, modeling and simulation method, test method and rectification method of EMC are demonstrated. The simulation and experimental results are presented as tables and figures. This book is useful as reference for graduate students, senior undergraduates and engineering technicians of vehicle engineering related majors. For EMI prediction, suppression and EMC optimization design for EVs, this book provides reference for engineers to solve EMC problems. This book is intended for senior undergraduates, postgraduates, lecturers and laboratory researchers engaged in electric vehicle and electromagnetic compatibility research.
Automotive Electromagnetic Compatibility (EMC)
Title | Automotive Electromagnetic Compatibility (EMC) PDF eBook |
Author | Terence Rybak |
Publisher | Springer Science & Business Media |
Pages | 302 |
Release | 2007-06-14 |
Genre | Technology & Engineering |
ISBN | 1402077831 |
Anyone who has operated, serviced, or designed an automobile or truck in the last few years has most certainly noticed that the age of electronics in our vehicles is here! Electronic components and systems are used for everything from the traditional entertainment system to the latest in “drive by wire”, to two-way communication and navigation. The interesting fact is that the automotive industry has been based upon mechanical and materials engineering for much of its history without many of the techniques of electrical and electronic engineering. The emissions controls requirements of the 1970’s are generally recognized as the time when electronics started to make their way into the previous mechanically based systems and functions. While this revolution was going on, the electronics industry developed issues and concepts that were addressed to allow interoperation of the systems in the presence of each other and with the external environment. This included the study of electromagnetic compatibility, as systems and components started to have influence upon each other just due to their operation. EMC developed over the years, and has become a specialized area of engineering applicable to any area of systems that included electronics. Many well-understood aspects of EMC have been developed, just as many aspects of automotive systems have been developed. We are now at a point where the issues of EMC are becoming more and more integrated into the automotive industry.
Electric Vehicle Battery Systems
Title | Electric Vehicle Battery Systems PDF eBook |
Author | Sandeep Dhameja |
Publisher | Elsevier |
Pages | 243 |
Release | 2001-10-30 |
Genre | Technology & Engineering |
ISBN | 0080488765 |
Electric Vehicle Battery Systems provides operational theory and design guidance for engineers and technicians working to design and develop efficient electric vehicle (EV) power sources. As Zero Emission Vehicles become a requirement in more areas of the world, the technology required to design and maintain their complex battery systems is needed not only by the vehicle designers, but by those who will provide recharging and maintenance services, as well as utility infrastructure providers. Includes fuel cell and hybrid vehicle applications.Written with cost and efficiency foremost in mind, Electric Vehicle Battery Systems offers essential details on failure mode analysis of VRLA, NiMH battery systems, the fast-charging of electric vehicle battery systems based on Pb-acid, NiMH, Li-ion technologies, and much more. Key coverage includes issues that can affect electric vehicle performance, such as total battery capacity, battery charging and discharging, and battery temperature constraints. The author also explores electric vehicle performance, battery testing (15 core performance tests provided), lithium-ion batteries, fuel cells and hybrid vehicles. In order to make a practical electric vehicle, a thorough understanding of the operation of a set of batteries in a pack is necessary. Expertly written and researched, Electric Vehicle Battery Systems will prove invaluable to automotive engineers, electronics and integrated circuit design engineers, and anyone whose interests involve electric vehicles and battery systems.* Addresses cost and efficiency as key elements in the design process* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies
Modeling and Simulation for Electric Vehicle Applications
Title | Modeling and Simulation for Electric Vehicle Applications PDF eBook |
Author | Mohamed Amine Fakhfakh |
Publisher | BoD – Books on Demand |
Pages | 188 |
Release | 2016-10-05 |
Genre | Technology & Engineering |
ISBN | 9535126369 |
The book presents interesting topics from the area of modeling and simulation of electric vehicles application. The results presented by the authors of the book chapters are very interesting and inspiring. The book will familiarize the readers with the solutions and enable the readers to enlarge them by their own research. It will be useful for students of Electrical Engineering; it helps them solve practical problems.
Wireless Power Transfer for Electric Vehicles and Mobile Devices
Title | Wireless Power Transfer for Electric Vehicles and Mobile Devices PDF eBook |
Author | Chun T. Rim |
Publisher | John Wiley & Sons |
Pages | 626 |
Release | 2017-08-07 |
Genre | Technology & Engineering |
ISBN | 1119329051 |
From mobile, cable-free re-charging of electric vehicles, smart phones and laptops to collecting solar electricity from orbiting solar farms, wireless power transfer (WPT) technologies offer consumers and society enormous benefits. Written by innovators in the field, this comprehensive resource explains the fundamental principles and latest advances in WPT and illustrates key applications of this emergent technology. Key features and coverage include: The fundamental principles of WPT to practical applications on dynamic charging and static charging of EVs and smartphones. Theories for inductive power transfer (IPT) such as the coupled inductor model, gyrator circuit model, and magnetic mirror model. IPTs for road powered EVs, including controller, compensation circuit, electro-magnetic field cancel, large tolerance, power rail segmentation, and foreign object detection. IPTs for static charging for EVs and large tolerance and capacitive charging issues, as well as IPT mobile applications such as free space omnidirectional IPT by dipole coils and 2D IPT for robots. Principle and applications of capacitive power transfer. Synthesized magnetic field focusing, wireless nuclear instrumentation, and future WPT. A technical asset for engineers in the power electronics, internet of things and automotive sectors, Wireless Power Transfer for Electric Vehicles and Mobile Devices is an essential design and analysis guide and an important reference for graduate and higher undergraduate students preparing for careers in these industries.
Electromagnetic Interference and Compatibility
Title | Electromagnetic Interference and Compatibility PDF eBook |
Author | Paolo Stefano Crovetti |
Publisher | MDPI |
Pages | 206 |
Release | 2021-08-31 |
Genre | Technology & Engineering |
ISBN | 3036505008 |
Recent progress in the fields of Electrical and Electronic Engineering has created new application scenarios and new Electromagnetic Compatibility (EMC) challenges, along with novel tools and methodologies to address them. This volume, which collects the contributions published in the “Electromagnetic Interference and Compatibility” Special Issue of MDPI Electronics, provides a vivid picture of current research trends and new developments in the rapidly evolving, broad area of EMC, including contributions on EMC issues in digital communications, power electronics, and analog integrated circuits and sensors, along with signal and power integrity and electromagnetic interference (EMI) suppression properties of materials.
Managing Electric Vehicle Power
Title | Managing Electric Vehicle Power PDF eBook |
Author | Sam Davis |
Publisher | SAE International |
Pages | 180 |
Release | 2020-08-31 |
Genre | Technology & Engineering |
ISBN | 146860144X |
Power management involves all the power consumed in an electric vehicle (EV), so it impacts the vehicle's performance, safety, and driving range. To provide these vehicle characteristics, power management: Ensures that the proper power, voltage, and current are applied to each electronic circuit. Ensures that there is isolation between low-voltage and highvoltage (HV) circuits. Offers power circuit protection against electrical disturbances that can affect internal or external circuits. Managing Electric Vehicle Power provides complete coverage for understanding how best to utilize the primary power source across all the EV's Electric Control Units. Readers will also be introduced to the qualification standards of the Automotive Electronics Council (AEC). AEC standards are a 'one-time' qualification that typically takes place at the end of the development cycle.