Elastic Shape Analysis of Three-Dimensional Objects

Elastic Shape Analysis of Three-Dimensional Objects
Title Elastic Shape Analysis of Three-Dimensional Objects PDF eBook
Author Ian H. Jermyn
Publisher Springer Nature
Pages 169
Release 2022-05-31
Genre Computers
ISBN 3031018192

Download Elastic Shape Analysis of Three-Dimensional Objects Book in PDF, Epub and Kindle

Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations. We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in ℝ, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this framework is that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations. The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L2 metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities. These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis. This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters.

Riemannian Geometric Statistics in Medical Image Analysis

Riemannian Geometric Statistics in Medical Image Analysis
Title Riemannian Geometric Statistics in Medical Image Analysis PDF eBook
Author Xavier Pennec
Publisher Academic Press
Pages 634
Release 2019-09
Genre Computers
ISBN 0128147253

Download Riemannian Geometric Statistics in Medical Image Analysis Book in PDF, Epub and Kindle

Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Content includes: - The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs - Applications of statistics on manifolds and shape spaces in medical image computing - Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. - A complete reference covering both the foundations and state-of-the-art methods - Edited and authored by leading researchers in the field - Contains theory, examples, applications, and algorithms - Gives an overview of current research challenges and future applications

3D Shape Analysis

3D Shape Analysis
Title 3D Shape Analysis PDF eBook
Author Hamid Laga
Publisher John Wiley & Sons
Pages 368
Release 2019-01-07
Genre Mathematics
ISBN 1119405106

Download 3D Shape Analysis Book in PDF, Epub and Kindle

An in-depth description of the state-of-the-art of 3D shape analysis techniques and their applications This book discusses the different topics that come under the title of "3D shape analysis". It covers the theoretical foundations and the major solutions that have been presented in the literature. It also establishes links between solutions proposed by different communities that studied 3D shape, such as mathematics and statistics, medical imaging, computer vision, and computer graphics. The first part of 3D Shape Analysis: Fundamentals, Theory, and Applications provides a review of the background concepts such as methods for the acquisition and representation of 3D geometries, and the fundamentals of geometry and topology. It specifically covers stereo matching, structured light, and intrinsic vs. extrinsic properties of shape. Parts 2 and 3 present a range of mathematical and algorithmic tools (which are used for e.g., global descriptors, keypoint detectors, local feature descriptors, and algorithms) that are commonly used for the detection, registration, recognition, classification, and retrieval of 3D objects. Both also place strong emphasis on recent techniques motivated by the spread of commodity devices for 3D acquisition. Part 4 demonstrates the use of these techniques in a selection of 3D shape analysis applications. It covers 3D face recognition, object recognition in 3D scenes, and 3D shape retrieval. It also discusses examples of semantic applications and cross domain 3D retrieval, i.e. how to retrieve 3D models using various types of modalities, e.g. sketches and/or images. The book concludes with a summary of the main ideas and discussions of the future trends. 3D Shape Analysis: Fundamentals, Theory, and Applications is an excellent reference for graduate students, researchers, and professionals in different fields of mathematics, computer science, and engineering. It is also ideal for courses in computer vision and computer graphics, as well as for those seeking 3D industrial/commercial solutions.

Shape Design Sensitivity Analysis and Optimization of Three Dimensional Elastic Solids Using Geometric Modeling and Automatic Regridding

Shape Design Sensitivity Analysis and Optimization of Three Dimensional Elastic Solids Using Geometric Modeling and Automatic Regridding
Title Shape Design Sensitivity Analysis and Optimization of Three Dimensional Elastic Solids Using Geometric Modeling and Automatic Regridding PDF eBook
Author Tse-Min Yao
Publisher
Pages 332
Release 1986
Genre Structural design
ISBN

Download Shape Design Sensitivity Analysis and Optimization of Three Dimensional Elastic Solids Using Geometric Modeling and Automatic Regridding Book in PDF, Epub and Kindle

Shape Design Sensitivity Analysis and Optimization of Three Dimensional Elastic Solids Using Geometric Modeling and Automated Regridding

Shape Design Sensitivity Analysis and Optimization of Three Dimensional Elastic Solids Using Geometric Modeling and Automated Regridding
Title Shape Design Sensitivity Analysis and Optimization of Three Dimensional Elastic Solids Using Geometric Modeling and Automated Regridding PDF eBook
Author
Publisher
Pages 166
Release 1989
Genre
ISBN

Download Shape Design Sensitivity Analysis and Optimization of Three Dimensional Elastic Solids Using Geometric Modeling and Automated Regridding Book in PDF, Epub and Kindle

Three Dimensional Shape Analysis with Parametric Surface Modeling

Three Dimensional Shape Analysis with Parametric Surface Modeling
Title Three Dimensional Shape Analysis with Parametric Surface Modeling PDF eBook
Author Li Shen
Publisher
Pages 350
Release 2004
Genre Computer algorithms
ISBN

Download Three Dimensional Shape Analysis with Parametric Surface Modeling Book in PDF, Epub and Kindle

Three-Dimensional Elasticity

Three-Dimensional Elasticity
Title Three-Dimensional Elasticity PDF eBook
Author Philippe G. Ciarlet
Publisher Elsevier
Pages 500
Release 1994-01-19
Genre Mathematics
ISBN 9780444817761

Download Three-Dimensional Elasticity Book in PDF, Epub and Kindle

This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.