Effect of Manure Application Technique on Nitrous Oxide Emission from Agricultural Soils

Effect of Manure Application Technique on Nitrous Oxide Emission from Agricultural Soils
Title Effect of Manure Application Technique on Nitrous Oxide Emission from Agricultural Soils PDF eBook
Author Gerardus Lambertus Velthof
Publisher
Pages 74
Release 2010
Genre
ISBN

Download Effect of Manure Application Technique on Nitrous Oxide Emission from Agricultural Soils Book in PDF, Epub and Kindle

Soil Emission of Nitrous Oxide and its Mitigation

Soil Emission of Nitrous Oxide and its Mitigation
Title Soil Emission of Nitrous Oxide and its Mitigation PDF eBook
Author David Ussiri
Publisher Springer Science & Business Media
Pages 391
Release 2012-11-13
Genre Science
ISBN 9400753640

Download Soil Emission of Nitrous Oxide and its Mitigation Book in PDF, Epub and Kindle

Nitrous oxide gas is a long-lived relatively active greenhouse gas (GHG) with an atmospheric lifetime of approximately 120 years, and heat trapping effects about 310 times more powerful than carbon dioxide per molecule basis. It contributes about 6% of observed global warming. Nitrous oxide is not only a potent GHG, but it also plays a significant role in the depletion of stratospheric ozone. This book describes the anthropogenic sources of N2O with major emphasis on agricultural activities. It summarizes an overview of global cycling of N and the role of nitrous oxide on global warming and ozone depletion, and then focus on major source, soil borne nitrous oxide emissions. The spatial-temporal variation of soil nitrous oxide fluxes and underlying biogeochemical processes are described, as well as approaches to quantify fluxes of N2O from soils. Mitigation strategies to reduce the emissions, especially from agricultural soils, and fertilizer nitrogen sources are described in detail in the latter part of the book.

Mitigating Gaseous Nitrogen and Carbon Losses From Northeastern Agricultural Soils Via Alternative Soil Management Practices

Mitigating Gaseous Nitrogen and Carbon Losses From Northeastern Agricultural Soils Via Alternative Soil Management Practices
Title Mitigating Gaseous Nitrogen and Carbon Losses From Northeastern Agricultural Soils Via Alternative Soil Management Practices PDF eBook
Author Kyle Michael Dittmer
Publisher
Pages 282
Release 2019
Genre Climatic changes
ISBN

Download Mitigating Gaseous Nitrogen and Carbon Losses From Northeastern Agricultural Soils Via Alternative Soil Management Practices Book in PDF, Epub and Kindle

Traditional agricultural practices often result in gaseous losses of nitrous oxide (N2O), ammonia (NH3), and carbon dioxide (CO2), representing a net loss of nutrients from agricultural soils, which negatively impacts crop yield and requires farmers to increase nutrient inputs. By adopting best management practices (BMPs; i.e., no-tillage, cover crops, sub-surface manure application, and proper manure application timing), there is great potential to reduce these losses. Because N2O and CO2 are also greenhouse gases (GHGs), climate change mitigation via BMP adoption and emissions reductions would be an important co-benefit. However, adopting a no-tillage and cover cropping system has had setbacks within the Northeast, primarily due to concerns regarding manure nitrogen (N) losses in no-tillage systems as well as uncertainty surrounding the benefits of cover crops. This thesis used two field-trials located in Alburgh, Vermont to assess differences in (i) GHG emissions from agricultural soils, (ii) nitrate and ammonium retention, (iii) corn yield and protein content, and (iv) N uptake and retention via cover crop scavenging under a combination of different BMPs. Chapter 1 evaluates the effects of different reduced-tillage practices and manure application methods (i.e., vertical-tillage, no-tillage, manure injection, and broadcast manure application) on reducing N2O and CO2 emissions, retaining inorganic N, and improving crop yields. Greenhouse gas measurements were collected every other week for the growing season of 2015-2017 via static chamber method using a photoacoustic gas analyzer. Results from this study showed that tillage regimes and manure application method did not interact to affect any of the three research objectives, although differences between individual BMPs were observed. Notably, vertical tillage enhanced CO2 emissions relative to no-tillage, demonstrating the role of soil disturbance and aeration on aerobic microbial C transformations. Manure injection was found to significantly enhance both N2O and CO2 emission relative to broadcast application, likely due to the formation of anerobic micro-zones created from liquid manure injection. However, plots that received manure injection retained greater concentrations of soil nitrate, a vital nutrient for quality crop production, thereby highlighting a major tradeoff between gaseous N losses and N retention with manure injection. Chapter 2 evaluates the effects of tillage practices and timing of manure application to increase N retention with the use of cover crops in order to mitigate GHG emissions, enhance soil nitrate and ammonium retention, and improve cropping system N uptake. Treatments at this field trial consisted of a combination of the presence or absence of cover crops, no-tillage or conventional-tillage, and spring or fall manure application. Greenhouse gas emissions were measured every other week via static chamber method using a gas chromatograph for the growing season of 2018. Results from this study showed that the presence of cover crops enhanced both N2O and CO2 emissions relative to fallow land, irrespective of tillage regime and manure application season, likely as a result of greater N and carbon substrates entering the soil upon cover crop decomposition. Due to enhanced N2O emissions with cover crops, cover crops did not retain significantly greater inorganic N in the system upon termination.

Nitrous Oxide Emissions from Agricultural Soil Receiving Manure in a Changing Climate

Nitrous Oxide Emissions from Agricultural Soil Receiving Manure in a Changing Climate
Title Nitrous Oxide Emissions from Agricultural Soil Receiving Manure in a Changing Climate PDF eBook
Author Chih-Yu Hung
Publisher
Pages
Release 2021
Genre
ISBN

Download Nitrous Oxide Emissions from Agricultural Soil Receiving Manure in a Changing Climate Book in PDF, Epub and Kindle

"Soil nitrous oxide (N2O) emission varies in magnitude and occurs sporadically during the spring freeze-thaw period in cold humid temperate regions. Fluctuations in soil N2O emissions are related to soil biophysical properties, which are influenced by agricultural practices like fall application of manure and fall-sown cover crops, as well as rainfall and other weather events. The objectives of this thesis were to (1) quantify N2O emissions in the spring period from agricultural soils that received manure and were planted with a cover crop in the previous fall, (2) estimate the influence of fall-applied manure and cover crops on the spring soil N2O emissions in changing climate, (3) determine the biophysical factors that control soil N¬2O emissions after a rain-induced thawing event, and (4) propose a monitoring method to estimate N2O emissions in agricultural soils. First, I quantified the soil N2O emissions with a two-year field experiment. Soil N2O emission in the spring freeze-thaw period (c.a. 30 d) was -2.35 to 13.57 g N ha-1 and not affected by dairy manure application (solid or liquid) or cover crops (ryegrass and ryegrass/hairy vetch), possibly due to the low manure N application rate and N loss over winter. Second, I evaluated soil N2O emissions in the spring freeze-thaw period under three climate scenarios (baseline, from 1981–2010; Representative Concentration Pathway 4.5 and 8.5 from 2071–2100) with the Decomposition-Denitrification model. The model predicted that more reactive N will be retained by cover crops under future climate scenarios, but the soil N2O emissions will not increase. However, applying solid manure without a cover crop led to more soil N2O emissions than other treatments tested under three climate scenarios (9.90 to 61.50 g N ha-1, P

Effect of mineral N fertilizers – N form, amount and way of application – on nitrous oxide emissions from croplands

Effect of mineral N fertilizers – N form, amount and way of application – on nitrous oxide emissions from croplands
Title Effect of mineral N fertilizers – N form, amount and way of application – on nitrous oxide emissions from croplands PDF eBook
Author Ulrike Lebender
Publisher Cuvillier Verlag
Pages 144
Release 2014-07-24
Genre Science
ISBN 3736947658

Download Effect of mineral N fertilizers – N form, amount and way of application – on nitrous oxide emissions from croplands Book in PDF, Epub and Kindle

The present work evaluated the effect of mineral nitrogen (N) fertilizer application during crop production on the potential risk of gaseous N loss in the form of nitrous oxide (N2O). Nitrous oxide (N2O) is an environmentally important atmospheric trace gas and contributes to the anthropogenic greenhouse effect. In addition, it is a precursor to photochemical nitric oxide (NO) production in the stratosphere which leads to stratospheric ozone depletion. Agriculture is considered to be the main source of anthropogenic N2O, with agricultural soils representing the single largest source due to nitrogen fertilizer applications during crop production. The purpose of this study was to examine the effects of mineral N fertilizers (N form, amount, mode of application) on N2O emissions from fertilized croplands in north-west Germany. Therefore several field trials, one greenhouse pot experiment and two incubation experiments were conducted. Nitrous oxide fluxes were measured by means of the closed chamber method. The length of the experimental period varied between experiments from several weeks (42 days) up to one-year measurement campaigns. The amount of N2O emitted during the crop growth period depended on the N form applied as well as on the mode of application, and a linear relationship between cumulative N2O emissions and total N fertilizer amount applied was found.

RAMIRAN 2017: Sustainable Utilisation of Manures and Residue Resources in Agriculture

RAMIRAN 2017: Sustainable Utilisation of Manures and Residue Resources in Agriculture
Title RAMIRAN 2017: Sustainable Utilisation of Manures and Residue Resources in Agriculture PDF eBook
Author Tom Misselbrook
Publisher Frontiers Media SA
Pages 249
Release 2019-12-30
Genre
ISBN 288963227X

Download RAMIRAN 2017: Sustainable Utilisation of Manures and Residue Resources in Agriculture Book in PDF, Epub and Kindle

This eBook presents highlight papers from the 17th International conference of the Recycling of Agricultural, Municipal and Industrial Residues to Agriculture Network (RAMIRAN) that was held in Wexford, Ireland in September 2017. The book contains a broad range of papers around this multidisciplinary theme covering topics including regional and national organic resource use planning, impact of livestock diet on manure composition, fate and utilisation of excreta from grazing livestock, anaerobic digestion, overcoming barriers to resource reuse, hygienic aspects of residue recycling and impacts on soil health. The overarching theme being addressed is the sustainable recycling of organic residues to agriculture, to promote effective nutrient use and minimise environmental impact.

Methods of Introducing System Models into Agricultural Research

Methods of Introducing System Models into Agricultural Research
Title Methods of Introducing System Models into Agricultural Research PDF eBook
Author Lajpat R. Ahuja
Publisher John Wiley & Sons
Pages 480
Release 2020-01-22
Genre Technology & Engineering
ISBN 0891181806

Download Methods of Introducing System Models into Agricultural Research Book in PDF, Epub and Kindle

Why model? Agricultural system models enhance and extend field research...to synthesize and examine experiment data and advance our knowledge faster, to extend current research in time to predict best management systems, and to prepare for climate-change effects on agriculture. The relevance of such models depends on their implementation. Methods of Introducing System Models into Agricultural Research is the ultimate handbook for field scientists and other model users in the proper methods of model use. Readers will learn parameter estimation, calibration, validation, and extension of experimental results to other weather conditions, soils, and climates. The proper methods are the key to realizing the great potential benefits of modeling an agricultural system. Experts cover the major models, with the synthesis of knowledge that is the hallmark of the Advances in Agricultural Systems Modeling series.