Dynamical Theories of Brownian Motion
Title | Dynamical Theories of Brownian Motion PDF eBook |
Author | Edward Nelson |
Publisher | Princeton University Press |
Pages | 147 |
Release | 1967-02-21 |
Genre | Mathematics |
ISBN | 0691079501 |
These notes are based on a course of lectures given by Professor Nelson at Princeton during the spring term of 1966. The subject of Brownian motion has long been of interest in mathematical probability. In these lectures, Professor Nelson traces the history of earlier work in Brownian motion, both the mathematical theory, and the natural phenomenon with its physical interpretations. He continues through recent dynamical theories of Brownian motion, and concludes with a discussion of the relevance of these theories to quantum field theory and quantum statistical mechanics.
Dynamical Theories of Brownian Motion
Title | Dynamical Theories of Brownian Motion PDF eBook |
Author | Edward Nelson |
Publisher | Princeton University Press |
Pages | 148 |
Release | 2020-10-06 |
Genre | Mathematics |
ISBN | 0691219613 |
These notes are based on a course of lectures given by Professor Nelson at Princeton during the spring term of 1966. The subject of Brownian motion has long been of interest in mathematical probability. In these lectures, Professor Nelson traces the history of earlier work in Brownian motion, both the mathematical theory, and the natural phenomenon with its physical interpretations. He continues through recent dynamical theories of Brownian motion, and concludes with a discussion of the relevance of these theories to quantum field theory and quantum statistical mechanics.
Probability and Stochastic Processes for Physicists
Title | Probability and Stochastic Processes for Physicists PDF eBook |
Author | Nicola Cufaro Petroni |
Publisher | Springer Nature |
Pages | 372 |
Release | 2020-06-25 |
Genre | Science |
ISBN | 3030484084 |
This book seeks to bridge the gap between the parlance, the models, and even the notations used by physicists and those used by mathematicians when it comes to the topic of probability and stochastic processes. The opening four chapters elucidate the basic concepts of probability, including probability spaces and measures, random variables, and limit theorems. Here, the focus is mainly on models and ideas rather than the mathematical tools. The discussion of limit theorems serves as a gateway to extensive coverage of the theory of stochastic processes, including, for example, stationarity and ergodicity, Poisson and Wiener processes and their trajectories, other Markov processes, jump-diffusion processes, stochastic calculus, and stochastic differential equations. All these conceptual tools then converge in a dynamical theory of Brownian motion that compares the Einstein–Smoluchowski and Ornstein–Uhlenbeck approaches, highlighting the most important ideas that finally led to a connection between the Schrödinger equation and diffusion processes along the lines of Nelson’s stochastic mechanics. A series of appendices cover particular details and calculations, and offer concise treatments of particular thought-provoking topics.
Brownian Dynamics at Boundaries and Interfaces
Title | Brownian Dynamics at Boundaries and Interfaces PDF eBook |
Author | Zeev Schuss |
Publisher | Springer Science & Business Media |
Pages | 340 |
Release | 2013-08-15 |
Genre | Mathematics |
ISBN | 1461476879 |
Brownian dynamics serve as mathematical models for the diffusive motion of microscopic particles of various shapes in gaseous, liquid, or solid environments. The renewed interest in Brownian dynamics is due primarily to their key role in molecular and cellular biophysics: diffusion of ions and molecules is the driver of all life. Brownian dynamics simulations are the numerical realizations of stochastic differential equations that model the functions of biological micro devices such as protein ionic channels of biological membranes, cardiac myocytes, neuronal synapses, and many more. Stochastic differential equations are ubiquitous models in computational physics, chemistry, biophysics, computer science, communications theory, mathematical finance theory, and many other disciplines. Brownian dynamics simulations of the random motion of particles, be it molecules or stock prices, give rise to mathematical problems that neither the kinetic theory of Maxwell and Boltzmann, nor Einstein’s and Langevin’s theories of Brownian motion could predict. This book takes the readers on a journey that starts with the rigorous definition of mathematical Brownian motion, and ends with the explicit solution of a series of complex problems that have immediate applications. It is aimed at applied mathematicians, physicists, theoretical chemists, and physiologists who are interested in modeling, analysis, and simulation of micro devices of microbiology. The book contains exercises and worked out examples throughout.
Investigations on the Theory of the Brownian Movement
Title | Investigations on the Theory of the Brownian Movement PDF eBook |
Author | Albert Einstein |
Publisher | Courier Corporation |
Pages | 148 |
Release | 1956-01-01 |
Genre | Science |
ISBN | 9780486603049 |
Five early papers evolve theory that won Einstein a Nobel Prize: "Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecular-Kinetic Theory of Heat"; "On the Theory of the Brownian Movement"; "A New Determination of Molecular Dimensions"; "Theoretical Observations on the Brownian Motion"; and "Elementary Theory of the Brownian Motion."
Tensor Analysis
Title | Tensor Analysis PDF eBook |
Author | Edward Nelson |
Publisher | Princeton University Press |
Pages | 134 |
Release | 2015-12-08 |
Genre | Mathematics |
ISBN | 140087923X |
These notes are based on a course of lectures given by Professor Nelson at Princeton during the spring term of 1966. The subject of Brownian motion has long been of interest in mathematical probability. In these lectures, Professor Nelson traces the history of earlier work in Brownian motion, both the mathematical theory, and the natural phenomenon with its physical interpretations. He continues through recent dynamical theories of Brownian motion, and concludes with a discussion of the relevance of these theories to quantum field theory and quantum statistical mechanics. Originally published in 1967. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Stochastic Processes and Applications
Title | Stochastic Processes and Applications PDF eBook |
Author | Grigorios A. Pavliotis |
Publisher | Springer |
Pages | 345 |
Release | 2014-11-19 |
Genre | Mathematics |
ISBN | 1493913239 |
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.