Dynamical Systems and Evolution Equations

Dynamical Systems and Evolution Equations
Title Dynamical Systems and Evolution Equations PDF eBook
Author John A. Walker
Publisher Springer Science & Business Media
Pages 244
Release 2013-03-09
Genre Computers
ISBN 1468410369

Download Dynamical Systems and Evolution Equations Book in PDF, Epub and Kindle

This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.

A Stability Technique for Evolution Partial Differential Equations

A Stability Technique for Evolution Partial Differential Equations
Title A Stability Technique for Evolution Partial Differential Equations PDF eBook
Author Victor A. Galaktionov
Publisher Springer Science & Business Media
Pages 388
Release 2012-12-06
Genre Mathematics
ISBN 1461220505

Download A Stability Technique for Evolution Partial Differential Equations Book in PDF, Epub and Kindle

* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.

Dynamics of Evolutionary Equations

Dynamics of Evolutionary Equations
Title Dynamics of Evolutionary Equations PDF eBook
Author George R. Sell
Publisher Springer Science & Business Media
Pages 680
Release 2013-04-17
Genre Mathematics
ISBN 1475750374

Download Dynamics of Evolutionary Equations Book in PDF, Epub and Kindle

The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. This book serves as an entrée for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations.

Evolution Equations

Evolution Equations
Title Evolution Equations PDF eBook
Author Kaïs Ammari
Publisher Cambridge University Press
Pages 205
Release 2018
Genre Mathematics
ISBN 1108412300

Download Evolution Equations Book in PDF, Epub and Kindle

The proceedings of a summer school held in 2015 whose theme was long time behavior and control of evolution equations.

Abstract Parabolic Evolution Equations and their Applications

Abstract Parabolic Evolution Equations and their Applications
Title Abstract Parabolic Evolution Equations and their Applications PDF eBook
Author Atsushi Yagi
Publisher Springer Science & Business Media
Pages 594
Release 2009-11-03
Genre Mathematics
ISBN 3642046312

Download Abstract Parabolic Evolution Equations and their Applications Book in PDF, Epub and Kindle

This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0

Infinite-Dimensional Dynamical Systems in Mechanics and Physics

Infinite-Dimensional Dynamical Systems in Mechanics and Physics
Title Infinite-Dimensional Dynamical Systems in Mechanics and Physics PDF eBook
Author Roger Temam
Publisher Springer Science & Business Media
Pages 517
Release 2012-12-06
Genre Mathematics
ISBN 1468403133

Download Infinite-Dimensional Dynamical Systems in Mechanics and Physics Book in PDF, Epub and Kindle

This is the first attempt at a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics. Other areas of science and technology are included where appropriate. The relation between infinite and finite dimensional systems is presented from a synthetic viewpoint and equations considered include reaction-diffusion, Navier-Stokes and other fluid mechanics equations, magnetohydrodynamics, thermohydraulics, pattern formation, Ginzburg-Landau, damped wave and an introduction to inertial manifolds.

Differential Dynamical Systems, Revised Edition

Differential Dynamical Systems, Revised Edition
Title Differential Dynamical Systems, Revised Edition PDF eBook
Author James D. Meiss
Publisher SIAM
Pages 410
Release 2017-01-24
Genre Mathematics
ISBN 161197464X

Download Differential Dynamical Systems, Revised Edition Book in PDF, Epub and Kindle

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.