Dynamic Estimation and Control of Power Systems
Title | Dynamic Estimation and Control of Power Systems PDF eBook |
Author | Abhinav Kumar Singh |
Publisher | Academic Press |
Pages | 264 |
Release | 2018-10-04 |
Genre | Technology & Engineering |
ISBN | 0128140062 |
Dynamic estimation and control is a fast growing and widely researched field of study that lays the foundation for a new generation of technologies that can dynamically, adaptively and automatically stabilize power systems. This book provides a comprehensive introduction to research techniques for real-time estimation and control of power systems. Dynamic Estimation and Control of Power Systems coherently and concisely explains key concepts in a step by step manner, beginning with the fundamentals and building up to the latest developments of the field. Each chapter features examples to illustrate the main ideas, and effective research tools are presented for signal processing-based estimation of the dynamic states and subsequent control, both centralized and decentralized, as well as linear and nonlinear. Detailed mathematical proofs are included for readers who desire a deeper technical understanding of the methods. This book is an ideal research reference for engineers and researchers working on monitoring and stability of modern grids, as well as postgraduate students studying these topics. It serves to deliver a clear understanding of the tools needed for estimation and control, while also acting as a basis for readers to further develop new and improved approaches in their own research. - Offers the first concise, single resource on dynamic estimation and control of power systems - Provides both an understanding of estimation and control concepts and a comparison of results - Includes detailed case-studies, including MATLAB codes, to explain and demonstrate the concepts presented
Frequency Variations in Power Systems
Title | Frequency Variations in Power Systems PDF eBook |
Author | Federico Milano |
Publisher | John Wiley & Sons |
Pages | 353 |
Release | 2020-08-03 |
Genre | Science |
ISBN | 1119551846 |
Frequency Variations in Power Systems: Modeling, State Estimation and Control presents the Frequency Divider Formula (FDF); a unique approach that defines, calculates and estimates the frequency in electrical energy systems. This authoritative book is written by two noted researchers on the topic. They define the meaning of frequency of an electrical quantity (such as voltage and current) in non-stationary conditions (for example the frequency is not equal to the nominal one) and pose the foundation of the frequency divider formula. The book describes the consequences of using a variable frequency in power system modelling and simulations, in state estimation and frequency control applications. In addition, the authors include a discussion on the applications of the frequency divider in systems where part of the generation is not based on synchronous machines, but rather on converter-interfaced energy resources, such as wind and solar power plants. This important book: Offers a review that clearly defines and shows how the Frequency Divider Formula can be applied Discusses the link between frequency and energy in power systems Presents a unified vision that accurately reveals the common thread that links modelling, control and estimation Includes information on the many implications that “local frequency variations” have on power system dynamics and control Contains several numerical examples Written for researchers, academic staff members, students, specialised consultants and professional software developers, Frequency Variations in Power Systems questions the conventional transient stability model of power system and proposes a new formulation.
Converter-Based Dynamics and Control of Modern Power Systems
Title | Converter-Based Dynamics and Control of Modern Power Systems PDF eBook |
Author | Antonello Monti |
Publisher | Academic Press |
Pages | 376 |
Release | 2020-10-22 |
Genre | Technology & Engineering |
ISBN | 0128184922 |
Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dynamics and identifies ways of establishing future challenges and how they can be considered at a global level to overcome potential problems. The book is designed to prepare future engineers for operating a system that will be driven by electronics and less by electromechanical systems. - Includes theory on the emerging topic of electrical grids based on power electronics - Creates a good bridge between traditional theory and modern theory to support researchers and engineers - Links the two fields of power systems and power electronics in electrical engineering
Power System Dynamics and Stability
Title | Power System Dynamics and Stability PDF eBook |
Author | Peter W. Sauer |
Publisher | John Wiley & Sons |
Pages | 376 |
Release | 2017-07-14 |
Genre | Technology & Engineering |
ISBN | 1119355745 |
Classic power system dynamics text now with phasor measurement and simulation toolbox This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances have been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement and using the Power System Toolbox for dynamic simulation have been added. These new materials will reinforce power system dynamic aspects treated more analytically in the earlier chapters. Key features: Systematic derivation of synchronous machine dynamic models and simplification. Energy function methods with an emphasis on the potential energy boundary surface and the controlling unstable equilibrium point approaches. Phasor computation and synchrophasor data applications. Book companion website for instructors featuring solutions and PowerPoint files. Website for students featuring MATLABTM files. Power System Dynamics and Stability, 2nd Edition, with Synchrophasor Measurement and Power System Toolbox combines theoretical as well as practical information for use as a text for formal instruction or for reference by working engineers.
Power System Dynamics and Stability
Title | Power System Dynamics and Stability PDF eBook |
Author | Peter W. Sauer |
Publisher | |
Pages | 376 |
Release | 1998 |
Genre | Technology & Engineering |
ISBN |
For a one-semester senior or beginning graduate level course in power system dynamics. This text begins with the fundamental laws for basic devices and systems in a mathematical modeling context. It includes systematic derivations of standard synchronous machine models with their fundamental controls. These individual models are interconnected for system analysis and simulation. Singular perturbation is used to derive and explain reduced-order models.
Power System State Estimation
Title | Power System State Estimation PDF eBook |
Author | Ali Abur |
Publisher | CRC Press |
Pages | 350 |
Release | 2004-03-24 |
Genre | Technology & Engineering |
ISBN | 9780203913673 |
Offering an up-to-date account of the strategies utilized in state estimation of electric power systems, this text provides a broad overview of power system operation and the role of state estimation in overall energy management. It uses an abundance of examples, models, tables, and guidelines to clearly examine new aspects of state estimation, the testing of network observability, and methods to assure computational efficiency. Includes numerous tutorial examples that fully analyze problems posed by the inclusion of current measurements in existing state estimators and illustrate practical solutions to these challenges. Written by two expert researchers in the field, Power System State Estimation extensively details topics never before covered in depth in any other text, including novel robust state estimation methods, estimation of parameter and topology errors, and the use of ampere measurements for state estimation. It introduces various methods and computational issues involved in the formulation and implementation of the weighted least squares (WLS) approach, presents statistical tests for the detection and identification of bad data in system measurements, and reveals alternative topological and numerical formulations for the network observability problem.
Small-signal stability, control and dynamic performance of power systems
Title | Small-signal stability, control and dynamic performance of power systems PDF eBook |
Author | M.J Gibbard |
Publisher | University of Adelaide Press |
Pages | 686 |
Release | 2015-07-15 |
Genre | Technology & Engineering |
ISBN | 1925261034 |
A thorough and exhaustive presentation of theoretical analysis and practical techniques for the small-signal analysis and control of large modern electric power systems as well as an assessment of their stability and damping performance.