Dirac Structures and Integrability of Nonlinear Evolution Equations
Title | Dirac Structures and Integrability of Nonlinear Evolution Equations PDF eBook |
Author | Irene Dorfman |
Publisher | |
Pages | 200 |
Release | 1993-06-22 |
Genre | Mathematics |
ISBN |
An introduction to the area for non-specialists with an original approach to the mathematical basis of one of the hottest research topics in nonlinear science. Deals with specific aspects of Hamiltonian theory of systems with finite or infinite dimensional phase spaces. Emphasizes systems which occur in soliton theory. Outlines current work in the Hamiltonian theory of evolution equations.
Algebraic Aspects of Integrable Systems
Title | Algebraic Aspects of Integrable Systems PDF eBook |
Author | A.S. Fokas |
Publisher | Springer Science & Business Media |
Pages | 352 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461224349 |
A collection of articles in memory of Irene Dorfman and her research in mathematical physics. Among the topics covered are: the Hamiltonian and bi-Hamiltonian nature of continuous and discrete integrable equations; the t-function construction; the r-matrix formulation of integrable systems; pseudo-differential operators and modular forms; master symmetries and the Bocher theorem; asymptotic integrability; the integrability of the equations of associativity; invariance under Laplace-darboux transformations; trace formulae of the Dirac and Schrodinger periodic operators; and certain canonical 1-forms.
Algebraic Structures In Integrability: Foreword By Victor Kac
Title | Algebraic Structures In Integrability: Foreword By Victor Kac PDF eBook |
Author | Vladimir V Sokolov |
Publisher | World Scientific |
Pages | 346 |
Release | 2020-06-05 |
Genre | Science |
ISBN | 9811219664 |
Relationships of the theory of integrable systems with various branches of mathematics are extremely deep and diverse. On the other hand, the most fundamental exactly integrable systems often have applications in theoretical physics. Therefore, many mathematicians and physicists are interested in integrable models.The book is intelligible to graduate and PhD students and can serve as an introduction to separate sections of the theory of classical integrable systems for scientists with algebraic inclinations. For the young, the book can serve as a starting point in the study of various aspects of integrability, while professional algebraists will be able to use some examples of algebraic structures, which appear in the theory of integrable systems, for wide-ranging generalizations.The statements are formulated in the simplest possible form. However, some ways of generalization are indicated. In the proofs, only essential points are mentioned, while for technical details, references are provided. The focus is on carefully selected examples. In addition, the book proposes many unsolved problems of various levels of complexity. A deeper understanding of every chapter of the book may require the study of more rigorous and specialized literature.
Nonlinear Evolution Equations and Dynamical Systems
Title | Nonlinear Evolution Equations and Dynamical Systems PDF eBook |
Author | Sandra Carillo |
Publisher | Springer Science & Business Media |
Pages | 247 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642840396 |
Nonlinear Evolution Equations and Dynamical Systems (NEEDS) provides a presentation of the state of the art. Except for a few review papers, the 40 contributions are intentially brief to give only the gist of the methods, proofs, etc. including references to the relevant litera- ture. This gives a handy overview of current research activities. Hence, the book should be equally useful to the senior resercher as well as the colleague just entering the field. Keypoints treated are: i) integrable systems in multidimensions and associated phenomenology ("dromions"); ii) criteria and tests of integrability (e.g., Painlev test); iii) new developments related to the scattering transform; iv) algebraic approaches to integrable systems and Hamiltonian theory (e.g., connections with Young-Baxter equations and Kac-Moody algebras); v) new developments in mappings and cellular automata, vi) applications to general relativity, condensed matter physics, and oceanography.
Noncommutative Structures in Mathematics and Physics
Title | Noncommutative Structures in Mathematics and Physics PDF eBook |
Author | S. Duplij |
Publisher | Springer Science & Business Media |
Pages | 472 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9401008361 |
A presentation of outstanding achievements and ideas, of both eastern and western scientists, both mathematicians and physicists. Their presentations of recent work on quantum field theory, supergravity, M-theory, black holes and quantum gravity, together with research into noncommutative geometry, Hopf algebras, representation theory, categories and quantum groups, take the reader to the forefront of the latest developments. Other topics covered include supergravity and branes, supersymmetric quantum mechanics and superparticles, (super) black holes, superalgebra representations, and SUSY GUT phenomenology. Essential reading for workers in the modern methods of theoretical and mathematical physics.
Nonlinear Systems and Their Remarkable Mathematical Structures
Title | Nonlinear Systems and Their Remarkable Mathematical Structures PDF eBook |
Author | Norbert Euler |
Publisher | CRC Press |
Pages | 541 |
Release | 2019-12-06 |
Genre | Mathematics |
ISBN | 0429554303 |
Nonlinear Systems and Their Remarkable Mathematical Structures, Volume 2 is written in a careful pedagogical manner by experts from the field of nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). This book aims to clearly illustrate the mathematical theories of nonlinear systems and its progress to both non-experts and active researchers in this area. Just like the first volume, this book is suitable for graduate students in mathematics, applied mathematics and engineering sciences, as well as for researchers in the subject of differential equations and dynamical systems. Features Collects contributions on recent advances in the subject of nonlinear systems Aims to make the advanced mathematical methods accessible to the non-experts Suitable for a broad readership including researchers and graduate students in mathematics and applied mathematics
Integrability
Title | Integrability PDF eBook |
Author | Alexander Mikhailov |
Publisher | Springer |
Pages | 348 |
Release | 2008-11-05 |
Genre | Science |
ISBN | 3540881115 |
The principal aim of the book is to give a comprehensive account of the variety of approaches to such an important and complex concept as Integrability. Dev- oping mathematical models, physicists often raise the following questions: whether the model obtained is integrable or close in some sense to an integrable one and whether it can be studied in depth analytically. In this book we have tried to c- ate a mathematical framework to address these issues, and we give descriptions of methods and review results. In the Introduction we give a historical account of the birth and development of the theory of integrable equations, focusing on the main issue of the book – the concept of integrability itself. A universal de nition of Integrability is proving to be elusive despite more than 40 years of its development. Often such notions as “- act solvability” or “regular behaviour” of solutions are associated with integrable systems. Unfortunately these notions do not lead to any rigorous mathematical d- inition. A constructive approach could be based upon the study of hidden and rich algebraic or analytic structures associated with integrable equations. The requi- ment of existence of elements of these structures could, in principle, be taken as a de nition for integrability. It is astonishing that the nal result is not sensitive to the choice of the structure taken; eventually we arrive at the same pattern of eq- tions.