On the Hypotheses Which Lie at the Bases of Geometry
Title | On the Hypotheses Which Lie at the Bases of Geometry PDF eBook |
Author | Bernhard Riemann |
Publisher | Birkhäuser |
Pages | 181 |
Release | 2016-04-19 |
Genre | Mathematics |
ISBN | 3319260421 |
This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.
Riemannian Geometry
Title | Riemannian Geometry PDF eBook |
Author | Frank Morgan |
Publisher | A K Peters/CRC Press |
Pages | 0 |
Release | 2009-06-22 |
Genre | Mathematics |
ISBN | 9781568814711 |
This classic text serves as a tool for self-study; it is also used as a basic text for undergraduate courses in differential geometry. The author's ability to extract the essential elements of the theory in a lucid and concise fashion allows the student easy access to the material and enables the instructor to add emphasis and cover special topics. The extraordinary wealth of examples within the exercises and the new material, ranging from isoperimetric problems to comments on Einstein's original paper on relativity theory, enhance this new edition.
First Steps in Differential Geometry
Title | First Steps in Differential Geometry PDF eBook |
Author | Andrew McInerney |
Publisher | Springer Science & Business Media |
Pages | 420 |
Release | 2013-07-09 |
Genre | Mathematics |
ISBN | 1461477328 |
Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as "the study of structures on the tangent space," and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.
An Introduction to Riemannian Geometry
Title | An Introduction to Riemannian Geometry PDF eBook |
Author | Leonor Godinho |
Publisher | Springer |
Pages | 476 |
Release | 2014-07-26 |
Genre | Mathematics |
ISBN | 3319086669 |
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.
Riemannian Geometry
Title | Riemannian Geometry PDF eBook |
Author | Peter Petersen |
Publisher | Springer Science & Business Media |
Pages | 443 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 1475764340 |
Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialise in Riemannian geometry. Instead of variational techniques, the author uses a unique approach, emphasising distance functions and special co-ordinate systems. He also uses standard calculus with some techniques from differential equations to provide a more elementary route. Many chapters contain material typically found in specialised texts, never before published in a single source. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research - including sections on convergence and compactness of families of manifolds. Thus, this book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.
Fundamentals of Differential Geometry
Title | Fundamentals of Differential Geometry PDF eBook |
Author | Serge Lang |
Publisher | Springer Science & Business Media |
Pages | 553 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461205417 |
This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER
Introduction to Riemannian Manifolds
Title | Introduction to Riemannian Manifolds PDF eBook |
Author | John M. Lee |
Publisher | Springer |
Pages | 447 |
Release | 2019-01-02 |
Genre | Mathematics |
ISBN | 3319917552 |
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.