Differential Equations on Fractals

Differential Equations on Fractals
Title Differential Equations on Fractals PDF eBook
Author Robert S. Strichartz
Publisher Princeton University Press
Pages 196
Release 2006-08-20
Genre Mathematics
ISBN 9780691127316

Download Differential Equations on Fractals Book in PDF, Epub and Kindle

Measure, energy, and metric -- Laplacian -- Spectrum of the laplacian -- Postcritically finite fractals -- Further topics.

Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs
Title Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs PDF eBook
Author Alexander Grigor'yan
Publisher Walter de Gruyter GmbH & Co KG
Pages 337
Release 2021-01-18
Genre Mathematics
ISBN 3110700859

Download Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs Book in PDF, Epub and Kindle

The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.

Fractional Dynamics

Fractional Dynamics
Title Fractional Dynamics PDF eBook
Author Carlo Cattani
Publisher Walter de Gruyter GmbH & Co KG
Pages 392
Release 2015-01-01
Genre Mathematics
ISBN 3110472090

Download Fractional Dynamics Book in PDF, Epub and Kindle

The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.

Fractal-Based Methods in Analysis

Fractal-Based Methods in Analysis
Title Fractal-Based Methods in Analysis PDF eBook
Author Herb Kunze
Publisher Springer Science & Business Media
Pages 417
Release 2011-11-18
Genre Mathematics
ISBN 1461418917

Download Fractal-Based Methods in Analysis Book in PDF, Epub and Kindle

The idea of modeling the behaviour of phenomena at multiple scales has become a useful tool in both pure and applied mathematics. Fractal-based techniques lie at the heart of this area, as fractals are inherently multiscale objects; they very often describe nonlinear phenomena better than traditional mathematical models. In many cases they have been used for solving inverse problems arising in models described by systems of differential equations and dynamical systems. "Fractal-Based Methods in Analysis" draws together, for the first time in book form, methods and results from almost twenty years of research in this topic, including new viewpoints and results in many of the chapters. For each topic the theoretical framework is carefully explained using examples and applications. The second chapter on basic iterated function systems theory is designed to be used as the basis for a course and includes many exercises. This chapter, along with the three background appendices on topological and metric spaces, measure theory, and basic results from set-valued analysis, make the book suitable for self-study or as a source book for a graduate course. The other chapters illustrate many extensions and applications of fractal-based methods to different areas. This book is intended for graduate students and researchers in applied mathematics, engineering and social sciences. Herb Kunze is a professor of mathematics at the University of Guelph in Ontario. Davide La Torre is an associate professor of mathematics in the Department of Economics, Management and Quantitative Methods of the University of Milan. Franklin Mendivil is a professor of mathematics at Acadia University in Nova Scotia. Edward Vrscay is a professor in the department of Applied Mathematics at the University of Waterloo in Ontario. The major focus of their research is on fractals and the applications of fractals.

Advanced Numerical and Semi-Analytical Methods for Differential Equations

Advanced Numerical and Semi-Analytical Methods for Differential Equations
Title Advanced Numerical and Semi-Analytical Methods for Differential Equations PDF eBook
Author Snehashish Chakraverty
Publisher John Wiley & Sons
Pages 256
Release 2019-04-16
Genre Mathematics
ISBN 1119423422

Download Advanced Numerical and Semi-Analytical Methods for Differential Equations Book in PDF, Epub and Kindle

Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

Analysis on Fractals

Analysis on Fractals
Title Analysis on Fractals PDF eBook
Author Jun Kigami
Publisher Cambridge University Press
Pages 238
Release 2001-06-07
Genre Mathematics
ISBN 0521793211

Download Analysis on Fractals Book in PDF, Epub and Kindle

This book covers analysis on fractals, a developing area of mathematics which focuses on the dynamical aspects of fractals, such as heat diffusion on fractals and the vibration of a material with fractal structure. The book provides a self-contained introduction to the subject, starting from the basic geometry of self-similar sets and going on to discuss recent results, including the properties of eigenvalues and eigenfunctions of the Laplacians, and the asymptotical behaviors of heat kernels on self-similar sets. Requiring only a basic knowledge of advanced analysis, general topology and measure theory, this book will be of value to graduate students and researchers in analysis and probability theory. It will also be useful as a supplementary text for graduate courses covering fractals.

Theory and Applications of Fractional Differential Equations

Theory and Applications of Fractional Differential Equations
Title Theory and Applications of Fractional Differential Equations PDF eBook
Author A.A. Kilbas
Publisher Elsevier
Pages 550
Release 2006-02-16
Genre Mathematics
ISBN 9780444518323

Download Theory and Applications of Fractional Differential Equations Book in PDF, Epub and Kindle

This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.