Differential Analysis on Complex Manifolds

Differential Analysis on Complex Manifolds
Title Differential Analysis on Complex Manifolds PDF eBook
Author Raymond O. Wells
Publisher Springer Science & Business Media
Pages 315
Release 2007-10-31
Genre Mathematics
ISBN 0387738916

Download Differential Analysis on Complex Manifolds Book in PDF, Epub and Kindle

A brand new appendix by Oscar Garcia-Prada graces this third edition of a classic work. In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Wells’s superb analysis also gives details of the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. Oscar Garcia-Prada’s appendix gives an overview of the developments in the field during the decades since the book appeared.

Differential Analysis on Complex Manifolds

Differential Analysis on Complex Manifolds
Title Differential Analysis on Complex Manifolds PDF eBook
Author R. O. Wells
Publisher Springer Science & Business Media
Pages 269
Release 2013-04-17
Genre Mathematics
ISBN 147573946X

Download Differential Analysis on Complex Manifolds Book in PDF, Epub and Kindle

In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of certain developments in the field during the decades since the book first appeared. From reviews of the 2nd Edition: "..the new edition of Professor Wells' book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work." - Nigel Hitchin, Bulletin of the London Mathematical Society "Its purpose is to present the basics of analysis and geometry on compact complex manifolds, and is already one of the standard sources for this material." - Daniel M. Burns, Jr., Mathematical Reviews

Differential Equations on Complex Manifolds

Differential Equations on Complex Manifolds
Title Differential Equations on Complex Manifolds PDF eBook
Author Boris Sternin
Publisher Springer Science & Business Media
Pages 517
Release 2013-03-09
Genre Mathematics
ISBN 940171259X

Download Differential Equations on Complex Manifolds Book in PDF, Epub and Kindle

The present monograph is devoted to the complex theory of differential equations. Not yet a handbook, neither a simple collection of articles, the book is a first attempt to present a more or less detailed exposition of a young but promising branch of mathematics, that is, the complex theory of partial differential equations. Let us try to describe the framework of this theory. First, simple examples show that solutions of differential equations are, as a rule, ramifying analytic functions. and, hence, are not regular near points of their ramification. Second, bearing in mind these important properties of solutions, we shall try to describe the method solving our problem. Surely, one has first to consider differential equations with constant coefficients. The apparatus solving such problems is well-known in the real the ory of differential equations: this is the Fourier transformation. Un fortunately, such a transformation had not yet been constructed for complex-analytic functions and the authors had to construct by them selves. This transformation is, of course, the key notion of the whole theory.

Complex Manifolds and Deformation of Complex Structures

Complex Manifolds and Deformation of Complex Structures
Title Complex Manifolds and Deformation of Complex Structures PDF eBook
Author K. Kodaira
Publisher Springer Science & Business Media
Pages 476
Release 2012-12-06
Genre Mathematics
ISBN 1461385903

Download Complex Manifolds and Deformation of Complex Structures Book in PDF, Epub and Kindle

This book is an introduction to the theory of complex manifolds and their deformations. Deformation of the complex structure of Riemann surfaces is an idea which goes back to Riemann who, in his famous memoir on Abelian functions published in 1857, calculated the number of effective parameters on which the deformation depends. Since the publication of Riemann's memoir, questions concerning the deformation of the complex structure of Riemann surfaces have never lost their interest. The deformation of algebraic surfaces seems to have been considered first by Max Noether in 1888 (M. Noether: Anzahl der Modulen einer Classe algebraischer Fliichen, Sitz. K6niglich. Preuss. Akad. der Wiss. zu Berlin, erster Halbband, 1888, pp. 123-127). However, the deformation of higher dimensional complex manifolds had been curiously neglected for 100 years. In 1957, exactly 100 years after Riemann's memoir, Frolicher and Nijenhuis published a paper in which they studied deformation of higher dimensional complex manifolds by a differential geometric method and obtained an important result. (A. Fr61icher and A. Nijenhuis: A theorem on stability of complex structures, Proc. Nat. Acad. Sci., U.S.A., 43 (1957), 239-241).

Twistor Geometry and Non-Linear Systems

Twistor Geometry and Non-Linear Systems
Title Twistor Geometry and Non-Linear Systems PDF eBook
Author H.D. Doebner
Publisher Springer
Pages 222
Release 2006-11-14
Genre Science
ISBN 3540394184

Download Twistor Geometry and Non-Linear Systems Book in PDF, Epub and Kindle

Partial Differential Equations in Several Complex Variables

Partial Differential Equations in Several Complex Variables
Title Partial Differential Equations in Several Complex Variables PDF eBook
Author So-chin Chen
Publisher American Mathematical Soc.
Pages 396
Release 2001
Genre Mathematics
ISBN 9780821829615

Download Partial Differential Equations in Several Complex Variables Book in PDF, Epub and Kindle

This book is intended as both an introductory text and a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the study of Cauchy-Riemann and tangential Cauchy-Riemann operators; this progress greatly influenced the development of PDEs and several complex variables. After the background material in complex analysis is developed in Chapters 1 to 3, thenext three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \bar\partial-Neumann problem, including Hórmander's L2 existence progress on the globalregularity and irregularity of the \bar\partial-Neumann operators. The second part of the book gives a comprehensive study of the tangential Cauchy-Riemann equations, another important class of equations in several complex variables first studied by Lewy. An up-to-date account of the L2 theory for \bar\partial b operator is given. Explicit integral solution representations are constructed both on the Heisenberg groups and on strictly convex boundaries with estimates in Hölder and L2spaces. Embeddability of abstract CR structures is discussed in detail here for the first time.Titles in this series are co-published with International Press, Cambridge, MA.

Complex Manifolds

Complex Manifolds
Title Complex Manifolds PDF eBook
Author James A. Morrow
Publisher American Mathematical Soc.
Pages 210
Release 2006
Genre Mathematics
ISBN 082184055X

Download Complex Manifolds Book in PDF, Epub and Kindle

Serves as an introduction to the Kodaira-Spencer theory of deformations of complex structures. Based on lectures given by Kunihiko Kodaira at Stanford University in 1965-1966, this book gives the original proof of the Kodaira embedding theorem, showing that the restricted class of Kahler manifolds called Hodge manifolds is algebraic.