Difference Equations For Scientists And Engineering: Interdisciplinary Difference Equations
Title | Difference Equations For Scientists And Engineering: Interdisciplinary Difference Equations PDF eBook |
Author | Michael A Radin |
Publisher | World Scientific |
Pages | 330 |
Release | 2019-09-24 |
Genre | Mathematics |
ISBN | 9811202982 |
'Radlin has done a nice job in producing a textbook which provides a learner friendly introduction to difference equations. It would suit as a core text for a first year course in the topic, aimed, as the title suggests, at physical science or engineering undergraduates. The student who is prepared to work through the book will get a good grounding in basic techniques and gain a feel for the possible behaviours of standard equations. He will also be given some indication of the usefulness and potential complexity of discrete systems in modern science and engineering.'London Mathematical SocietyWe introduce interdisciplinary research and get students and the audience familiarized with the difference equations; solving them explicitly, determining the long-term behavior of solutions (convergence, boundedness and periodicity). We help to develop intuition in analyzing convergence of solutions in terms of subsequences and analyzing patterns of periodic cycles. Our book helps you learn applications in biology, economics and business, computer science and engineering.
DSGE Models for Real Business Cycle and New Keynesian Macroeconomics
Title | DSGE Models for Real Business Cycle and New Keynesian Macroeconomics PDF eBook |
Author | Giuseppe Chirichiello |
Publisher | Springer Nature |
Pages | 380 |
Release | |
Genre | |
ISBN | 3031560345 |
Numerical Partial Differential Equations for Environmental Scientists and Engineers
Title | Numerical Partial Differential Equations for Environmental Scientists and Engineers PDF eBook |
Author | Daniel R. Lynch |
Publisher | Springer Science & Business Media |
Pages | 390 |
Release | 2006-06-02 |
Genre | Science |
ISBN | 0387236201 |
For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.
Linear Partial Differential Equations for Scientists and Engineers
Title | Linear Partial Differential Equations for Scientists and Engineers PDF eBook |
Author | Tyn Myint-U |
Publisher | Springer Science & Business Media |
Pages | 790 |
Release | 2007-04-05 |
Genre | Mathematics |
ISBN | 0817645608 |
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.
Functional Analysis in Interdisciplinary Applications—II
Title | Functional Analysis in Interdisciplinary Applications—II PDF eBook |
Author | Allaberen Ashyralyev |
Publisher | Springer Nature |
Pages | 289 |
Release | 2021-07-03 |
Genre | Mathematics |
ISBN | 3030692922 |
Functional analysis is an important branch of mathematical analysis which deals with the transformations of functions and their algebraic and topological properties. Motivated by their large applicability to real life problems, applications of functional analysis have been the aim of an intensive study effort in the last decades, yielding significant progress in the theory of functions and functional spaces, differential and difference equations and boundary value problems, differential and integral operators and spectral theory, and mathematical methods in physical and engineering sciences. The present volume is devoted to these investigations. The publication of this collection of papers is based on the materials of the mini-symposium "Functional Analysis in Interdisciplinary Applications" organized in the framework of the Fourth International Conference on Analysis and Applied Mathematics (ICAAM 2018, September 6–9, 2018). Presenting a wide range of topics and results, this book will appeal to anyone working in the subject area, including researchers and students interested to learn more about different aspects and applications of functional analysis. Many articles are written by experts from around the world, strengthening international integration in the fields covered. The contributions to the volume, all peer reviewed, contain numerous new results. This volume contains four different chapters. The first chapter contains the contributed papers focusing on various aspects of the theory of functions and functional spaces. The second chapter is devoted to the research on difference and differential equations and boundary value problems. The third chapter contains the results of studies on differential and integral operators and on the spectral theory. The fourth chapter is focused on the simulation of problems arising in real-world applications of applied sciences.
Hyers-Ulam Stability of Ordinary Differential Equations
Title | Hyers-Ulam Stability of Ordinary Differential Equations PDF eBook |
Author | Arun Kumar Tripathy |
Publisher | CRC Press |
Pages | 114 |
Release | 2021-05-24 |
Genre | Mathematics |
ISBN | 1000386902 |
Hyers-Ulam Stability of Ordinary Differential Equations undertakes an interdisciplinary, integrative overview of a kind of stability problem unlike the existing so called stability problem for Differential equations and Difference Equations. In 1940, S. M. Ulam posed the problem: When can we assert that approximate solution of a functional equation can be approximated by a solution of the corresponding equation before the audience at the University of Wisconsin which was first answered by D. H. Hyers on Banach space in 1941. Thereafter, T. Aoki, D. H. Bourgin and Th. M. Rassias improved the result of Hyers. After that many researchers have extended the Ulam's stability problems to other functional equations and generalized Hyer's result in various directions. Last three decades, this topic is very well known as Hyers-Ulam Stability or sometimes it is referred Hyers-Ulam-Rassias Stability. This book synthesizes interdisciplinary theory, definitions and examples of Ordinary Differential and Difference Equations dealing with stability problems. The purpose of this book is to display the new kind of stability problem to global audience and accessible to a broader interdisciplinary readership for e.g those are working in Mathematical Biology Modeling, bending beam problems of mechanical engineering also, some kind of models in population dynamics. This book may be a starting point for those associated in such research and covers the methods needed to explore the analysis. Features: The state-of-art is pure analysis with background functional analysis. A rich, unique synthesis of interdisciplinary findings and insights on resources. As we understand that the real world problem is heavily involved with Differential and Difference equations, the cited problems of this book may be useful in a greater sense as long as application point of view of this Hyers-Ulam Stability theory is concerned. Information presented in an accessible way for students, researchers, scientists and engineers.
Difference Equations, Second Edition
Title | Difference Equations, Second Edition PDF eBook |
Author | R Mickens |
Publisher | CRC Press |
Pages | 470 |
Release | 1991-01-01 |
Genre | Mathematics |
ISBN | 9780442001360 |
In recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.