Record Title to Land

Record Title to Land
Title Record Title to Land PDF eBook
Author Heman White Chaplin
Publisher
Pages 13
Release 1893
Genre
ISBN

Download Record Title to Land Book in PDF, Epub and Kindle

Modelling Diesel Combustion

Modelling Diesel Combustion
Title Modelling Diesel Combustion PDF eBook
Author P. A. Lakshminarayanan
Publisher Springer Science & Business Media
Pages 313
Release 2010-03-03
Genre Technology & Engineering
ISBN 904813885X

Download Modelling Diesel Combustion Book in PDF, Epub and Kindle

Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.

A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines
Title A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines PDF eBook
Author
Publisher
Pages 40
Release 2005
Genre
ISBN

Download A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines Book in PDF, Epub and Kindle

A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

Cleaner Combustion

Cleaner Combustion
Title Cleaner Combustion PDF eBook
Author Frédérique Battin-Leclerc
Publisher Springer Science & Business Media
Pages 657
Release 2013-09-06
Genre Technology & Engineering
ISBN 1447153073

Download Cleaner Combustion Book in PDF, Epub and Kindle

This overview compiles the on-going research in Europe to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels. Focus is given to the formation of a large number of hazardous minor pollutants and the inability of current combustion models to predict the formation of minor products such as alkenes, dienes, aromatics, aldehydes and soot nano-particles which have a deleterious impact on both the environment and on human health. Cleaner Combustion describes, at a fundamental level, the reactive chemistry of minor pollutants within extensively validated detailed mechanisms for traditional fuels, but also innovative surrogates, describing the complex chemistry of new environmentally important bio-fuels. Divided into five sections, a broad yet detailed coverage of related research is provided. Beginning with the development of detailed kinetic mechanisms, chapters go on to explore techniques to obtain reliable experimental data, soot and polycyclic aromatic hydrocarbons, mechanism reduction and uncertainty analysis, and elementary reactions. This comprehensive coverage of current research provides a solid foundation for researchers, managers, policy makers and industry operators working in or developing this innovative and globally relevant field.

Detailed Chemical Kinetic Model for Oxygenated Fuels

Detailed Chemical Kinetic Model for Oxygenated Fuels
Title Detailed Chemical Kinetic Model for Oxygenated Fuels PDF eBook
Author Sung-Woo Park
Publisher
Pages
Release 2012
Genre
ISBN

Download Detailed Chemical Kinetic Model for Oxygenated Fuels Book in PDF, Epub and Kindle

A detailed chemical kinetic model is developed and tested for the combustion of C2 and C3 oxygenated fuels such as ethanol, DME (dimethyl ether), acetone and n-propanol. It is validated by comparing predictions with experimental data on the structure of low pressure burner stabilised premixed flames and laminar burning velocities over a wide range of equivalence ratios. Data from shock tube and stirred reactor studies has also been considered. The elementary reactions of ethanol and DME oxidation have been studied extensively and were used as a starting point for extension to C3 oxygenated fuels. The chemistry of acetylene which is one of major intermediate species in higher hydrocarbon flames was also updated to improve the reliability of the present mechanism and acetylene laminar burning velocities and low-pressure premixed lean and rich flames were also computed. The detailed mechanism features more than 1500 reaction steps and 269 species. The structure of laminar premixed flames are predicted by using measured temperature profiles and conditions cover fuel-lean and fuel-rich mixtures at low pressure. The profiles of reactants, products and major intermediate species are compared to experimental data from mass spectrometry and the overall agreement between the kinetic model and experimental data is satisfactory. An analytic study of fuel consumption pathways is carried out to understand the detailed consumption pathways. The present mechanism is also tested against laminar flame speeds by calculating freely propagating premixed flames to extend the understanding of the combustion characteristics of oxygenated fuels. A sensitivity analysis is also performed.

Chemical Kinetic Models for HCCI and Diesel Combustion

Chemical Kinetic Models for HCCI and Diesel Combustion
Title Chemical Kinetic Models for HCCI and Diesel Combustion PDF eBook
Author
Publisher
Pages 10
Release 2008
Genre
ISBN

Download Chemical Kinetic Models for HCCI and Diesel Combustion Book in PDF, Epub and Kindle

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels

Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels
Title Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels PDF eBook
Author
Publisher
Pages
Release 2000
Genre
ISBN

Download Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels Book in PDF, Epub and Kindle

Thermodynamic properties and detailed chemical kinetic models have been developed for the combustion of two oxygenates: methyl butanoate, a model compound for biodiesel fuels, and methyl formate, a related simpler molecule. Bond additivity methods and rules for estimating kinetic parameters were adopted from hydrocarbon combustion and extended. The resulting mechanisms have been tested against the limited combustion data available in the literature, which was obtained at low temperature, subatmospheric conditions in closed vessels, using pressure measurements as the main diagnostic. Some qualitative agreement was obtained, but the experimental data consistently indicated lower overall reactivities than the model, differing by factors of 10 to 50. This discrepancy, which occurs for species with well-established kinetic mechanisms as well as for methyl esters, is tentatively ascribed to the presence of wall reactions in the experiments. The model predicts a region of weak or negative dependence of overall reaction rate on temperature for each methyl ester. Examination of the reaction fluxes provides an explanation of this behavior, involving a temperature-dependent competition between chain-propagating unimolecular decomposition processes and chain-branching processes, similar to that accepted for hydrocarbons. There is an urgent need to obtain more complete experimental data under well-characterized conditions for thorough testing of the model.