Derived Langlands: Monomial Resolutions Of Admissible Representations

Derived Langlands: Monomial Resolutions Of Admissible Representations
Title Derived Langlands: Monomial Resolutions Of Admissible Representations PDF eBook
Author Victor P Snaith
Publisher World Scientific
Pages 356
Release 2018-12-06
Genre Mathematics
ISBN 9813275766

Download Derived Langlands: Monomial Resolutions Of Admissible Representations Book in PDF, Epub and Kindle

The Langlands Programme is one of the most important areas in modern pure mathematics. The importance of this volume lies in its potential to recast many aspects of the programme in an entirely new context. For example, the morphisms in the monomial category of a locally p-adic Lie group have a distributional description, due to Bruhat in his thesis. Admissible representations in the programme are often treated via convolution algebras of distributions and representations of Hecke algebras. The monomial embedding, introduced in this book, elegantly fits together these two uses of distribution theory. The author follows up this application by giving the monomial category treatment of the Bernstein Centre, classified by Deligne-Bernstein-Zelevinsky.This book gives a new categorical setting in which to approach well-known topics. Therefore, the context used to explain examples is often the more generally accessible case of representations of finite general linear groups. For example, Galois base-change and epsilon factors for locally p-adic Lie groups are illustrated by the analogous Shintani descent and Kondo-Gauss sums, respectively. General linear groups of local fields are emphasized. However, since the philosophy of this book is essentially that of homotopy theory and algebraic topology, it includes a short appendix showing how the buildings of Bruhat-Tits, sufficient for the general linear group, may be generalised to the tom Dieck spaces (now known as the Baum-Connes spaces) when G is a locally p-adic Lie group.The purpose of this monograph is to describe a functorial embedding of the category of admissible k-representations of a locally profinite topological group G into the derived category of the additive category of the admissible k-monomial module category. Experts in the Langlands Programme may be interested to learn that when G is a locally p-adic Lie group, the monomial category is closely related to the category of topological modules over a sort of enlarged Hecke algebra with generators corresponding to characters on compact open modulo the centre subgroups of G. Having set up this functorial embedding, how the ingredients of the celebrated Langlands Programme adapt to the context of the derived monomial module category is examined. These include automorphic representations, epsilon factors and L-functions, modular forms, Weil-Deligne representations, Galois base change and Hecke operators.

Derived Langlands

Derived Langlands
Title Derived Langlands PDF eBook
Author Victor Percy Snaith
Publisher
Pages 356
Release 2018
Genre Algebraic number theory
ISBN 9789813275751

Download Derived Langlands Book in PDF, Epub and Kindle

Smooth-automorphic Forms And Smooth-automorphic Representations

Smooth-automorphic Forms And Smooth-automorphic Representations
Title Smooth-automorphic Forms And Smooth-automorphic Representations PDF eBook
Author Harald Grobner
Publisher World Scientific
Pages 262
Release 2023-06-09
Genre Mathematics
ISBN 9811246181

Download Smooth-automorphic Forms And Smooth-automorphic Representations Book in PDF, Epub and Kindle

This book provides a conceptual introduction into the representation theory of local and global groups, with final emphasis on automorphic representations of reductive groups G over number fields F.Our approach to automorphic representations differs from the usual literature: We do not consider 'K-finite' automorphic forms, but we allow a richer class of smooth functions of uniform moderate growth. Contrasting the usual approach, our space of 'smooth-automorphic forms' is intrinsic to the group scheme G/F.This setup also covers the advantage that a perfect representation-theoretical symmetry between the archimedean and non-archimedean places of the number field F is regained, by making the bigger space of smooth-automorphic forms into a proper, continuous representation of the full group of adelic points of G.Graduate students and researchers will find the covered topics appear for the first time in a book, where the theory of smooth-automorphic representations is robustly developed and presented in great detail.

Elementary Modular Iwasawa Theory

Elementary Modular Iwasawa Theory
Title Elementary Modular Iwasawa Theory PDF eBook
Author Haruzo Hida
Publisher World Scientific
Pages 446
Release 2021-10-04
Genre Mathematics
ISBN 9811241384

Download Elementary Modular Iwasawa Theory Book in PDF, Epub and Kindle

This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the author's 2019 AMS Leroy P Steele Prize-winning article without using much algebraic geometry.Starting with a description of Iwasawa's classical results on his proof of the main conjecture under the Kummer-Vandiver conjecture (which proves cyclicity of his Iwasawa module more than just proving his main conjecture), we describe a generalization of the method proving cyclicity to the adjoint Selmer group of every ordinary deformation of a two-dimensional Artin Galois representation.The fundamentals in the first five chapters are as follows:Many open problems are presented to stimulate young researchers pursuing their field of study.

Langlands Correspondence for Loop Groups

Langlands Correspondence for Loop Groups
Title Langlands Correspondence for Loop Groups PDF eBook
Author Edward Frenkel
Publisher Cambridge University Press
Pages 5
Release 2007-06-28
Genre Mathematics
ISBN 0521854431

Download Langlands Correspondence for Loop Groups Book in PDF, Epub and Kindle

The first account of local geometric Langlands Correspondence, a new area of mathematical physics developed by the author.

Dirac Operators in Representation Theory

Dirac Operators in Representation Theory
Title Dirac Operators in Representation Theory PDF eBook
Author Jing-Song Huang
Publisher Springer Science & Business Media
Pages 205
Release 2007-05-27
Genre Mathematics
ISBN 0817644938

Download Dirac Operators in Representation Theory Book in PDF, Epub and Kindle

This book presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. The book is an excellent contribution to the mathematical literature of representation theory, and this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.

Schubert Calculus and Its Applications in Combinatorics and Representation Theory

Schubert Calculus and Its Applications in Combinatorics and Representation Theory
Title Schubert Calculus and Its Applications in Combinatorics and Representation Theory PDF eBook
Author Jianxun Hu
Publisher Springer Nature
Pages 367
Release 2020-10-24
Genre Mathematics
ISBN 9811574510

Download Schubert Calculus and Its Applications in Combinatorics and Representation Theory Book in PDF, Epub and Kindle

This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.