Degree Theory of Immersed Hypersurfaces
Title | Degree Theory of Immersed Hypersurfaces PDF eBook |
Author | Harold Rosenberg |
Publisher | American Mathematical Soc. |
Pages | 62 |
Release | 2020-09-28 |
Genre | Mathematics |
ISBN | 1470441853 |
The authors develop a degree theory for compact immersed hypersurfaces of prescribed $K$-curvature immersed in a compact, orientable Riemannian manifold, where $K$ is any elliptic curvature function.
Degree Theory of Immersed Hypersurfaces
Title | Degree Theory of Immersed Hypersurfaces PDF eBook |
Author | Harold Rosenberg |
Publisher | |
Pages | |
Release | 2011 |
Genre | |
ISBN |
General Existence Theorems in Moduli Theory
Title | General Existence Theorems in Moduli Theory PDF eBook |
Author | Jack Kingsbury Hall |
Publisher | Stanford University |
Pages | 151 |
Release | 2011 |
Genre | |
ISBN |
In this thesis, we prove that there is an algebraic stack parameterizing all curves. The curves that appear in this algebraic stack are allowed to be arbitrarily singular, non-reduced, disconnected, and reducible. We also prove the boundedness of the open substack parameterizing reduced and connected curves with fixed arithmetic genus g and at most e irreducible components. We also show that for essentially any algebraic stack, there is an algebraic stack, the Hilbert stack, parameterizing quasi-finite maps to the stack. The technical heart of this result is a generalization of formal GAGA to a non-separated morphism of algebraic stacks, something that was previously unknown for a morphism of schemes. We also employ derived algebraic geometry, in an essential way, to prove the algebraicity of the Hilbert stack. The Hilbert stack, for algebraic spaces, was claimed to exist by M. Artin (1974), but was left unproved due to a lack of foundational results for non-separated algebraic spaces. Finally, we generalize the fundamental GAGA results of J. P. Serre (1956) in three ways---to the non-separated setting, to stacks, and to families. As an application of these results, we show that analytic compactifications of the moduli stack of smooth curves possessing modular interpretations are algebraizable.
Critical Point Theory and Submanifold Geometry
Title | Critical Point Theory and Submanifold Geometry PDF eBook |
Author | Richard S. Palais |
Publisher | Springer |
Pages | 276 |
Release | 2006-11-14 |
Genre | Mathematics |
ISBN | 3540459960 |
Real and Complex Submanifolds
Title | Real and Complex Submanifolds PDF eBook |
Author | Young Jin Suh |
Publisher | Springer |
Pages | 510 |
Release | 2014-12-05 |
Genre | Mathematics |
ISBN | 4431552154 |
Edited in collaboration with the Grassmann Research Group, this book contains many important articles delivered at the ICM 2014 Satellite Conference and the 18th International Workshop on Real and Complex Submanifolds, which was held at the National Institute for Mathematical Sciences, Daejeon, Republic of Korea, August 10–12, 2014. The book covers various aspects of differential geometry focused on submanifolds, symmetric spaces, Riemannian and Lorentzian manifolds, and Kähler and Grassmann manifolds.
Theory of Fundamental Bessel Functions of High Rank
Title | Theory of Fundamental Bessel Functions of High Rank PDF eBook |
Author | Zhi Qi |
Publisher | American Mathematical Society |
Pages | 123 |
Release | 2021-02-10 |
Genre | Mathematics |
ISBN | 1470443252 |
In this article, the author studies fundamental Bessel functions for $mathrm{GL}_n(mathbb F)$ arising from the Voronoí summation formula for any rank $n$ and field $mathbb F = mathbb R$ or $mathbb C$, with focus on developing their analytic and asymptotic theory. The main implements and subjects of this study of fundamental Bessel functions are their formal integral representations and Bessel differential equations. The author proves the asymptotic formulae for fundamental Bessel functions and explicit connection formulae for the Bessel differential equations.
Operator Theory on One-Sided Quaternion Linear Spaces: Intrinsic $S$-Functional Calculus and Spectral Operators
Title | Operator Theory on One-Sided Quaternion Linear Spaces: Intrinsic $S$-Functional Calculus and Spectral Operators PDF eBook |
Author | Jonathan Gantner |
Publisher | American Mathematical Society |
Pages | 114 |
Release | 2021-02-10 |
Genre | Mathematics |
ISBN | 1470442388 |
Two major themes drive this article: identifying the minimal structure necessary to formulate quaternionic operator theory and revealing a deep relation between complex and quaternionic operator theory. The theory for quaternionic right linear operators is usually formulated under the assumption that there exists not only a right- but also a left-multiplication on the considered Banach space $V$. This has technical reasons, as the space of bounded operators on $V$ is otherwise not a quaternionic linear space. A right linear operator is however only associated with the right multiplication on the space and in certain settings, for instance on quaternionic Hilbert spaces, the left multiplication is not defined a priori, but must be chosen randomly. Spectral properties of an operator should hence be independent of the left multiplication on the space.