Déformation, quantification, théorie de Lie

Déformation, quantification, théorie de Lie
Title Déformation, quantification, théorie de Lie PDF eBook
Author Alberto S. Cattaneo
Publisher Societe Mathematique de France
Pages 210
Release 2005
Genre Business & Economics
ISBN

Download Déformation, quantification, théorie de Lie Book in PDF, Epub and Kindle

In 1997, M. Kontsevich proved that every Poisson manifold admits a formal quantization, canonical up to equivalence. In doing so he solved a longstanding problem in mathematical physics. Through his proof and his interpretation of a later proof given by Tamarkin, he also opened up new research avenues in Lie theory, quantum group theory, deformation theory and the study of operads ... and uncovered fascinating links of these topics with number theory, knot theory and the theory of motives. Without doubt, his work on deformation quantization will continue to influence these fields for many years to come. In the three parts of this volume, we will 1) present the main results of Kontsevich's 1997 preprint and sketch his interpretation of Tamarkin's approach, 2) show the relevance of Kontsevich's theorem for Lie theory and 3) explain the idea from topological string theory which inspired Kontsevich's proof. An appendix is devoted to the geometry of configuration spaces.

Poisson Geometry, Deformation Quantisation and Group Representations

Poisson Geometry, Deformation Quantisation and Group Representations
Title Poisson Geometry, Deformation Quantisation and Group Representations PDF eBook
Author Simone Gutt
Publisher Cambridge University Press
Pages 380
Release 2005-06-21
Genre Mathematics
ISBN 9780521615051

Download Poisson Geometry, Deformation Quantisation and Group Representations Book in PDF, Epub and Kindle

An accessible introduction to Poisson geometry suitable for graduate students.

Deformation Quantization and Index Theory

Deformation Quantization and Index Theory
Title Deformation Quantization and Index Theory PDF eBook
Author Boris Fedosov
Publisher Wiley-VCH
Pages 325
Release 1995-12-28
Genre Mathematics
ISBN 9783055017162

Download Deformation Quantization and Index Theory Book in PDF, Epub and Kindle

In the monograph a new approach to deformation quantization on a symplectic manifold is developed. This approach gives rise to an important invariant, the so-called Weyl curvature, which is a formal deformation of the symplectic form. The isomophy classes of the deformed algebras are classified by the cohomology classes of the coefficients of the Weyl curvature. These algebras have many common features with the algebra of complete symbols of pseudodifferential operators except that in general there are no corresponding operator algebras. Nevertheless, the developed calculus allows to define the notion of an elliptic element and its index as well as to prove an index theorem similar to that of Atiyah-Singer for elliptic operators. The corresponding index formula contains the Weyl curvature and the usual ingredients entering the Atiyah-Singer formula. Applications of the index theorem are connected with the so-called asymptotic operator representation of the deformed algebra (the operator quantization), the formal deformation parameter h should be replaced by a numerical one ranging over some admissible set of the unit interval having 0 as its limit point. The fact that the index of any elliptic operator is an integer results in necessary quantization conditions: the index of any elliptic element should be asymptotically integer-valued as h tends to 0 over the admissible set. For a compact manifold a direct construction of the asymptotic operator representation shows that these conditions are also sufficient. Finally, a reduction theorem for deformation quantization is proved generalizing the classical Marsden-Weinstein theorem. In this case the index theorem gives the Bohr-Sommerfeld quantization rule and the multiplicities of eigenvalues.

Symplectic Geometry and Mathematical Physics

Symplectic Geometry and Mathematical Physics
Title Symplectic Geometry and Mathematical Physics PDF eBook
Author P. Donato
Publisher Springer Science & Business Media
Pages 504
Release 1991-12
Genre Mathematics
ISBN 9780817635817

Download Symplectic Geometry and Mathematical Physics Book in PDF, Epub and Kindle

This volume contains the proceedings of the conference "Colloque de Goometrie Symplectique et Physique Mathematique" which was held in Aix-en-Provence (France), June 11-15, 1990, in honor of Jean-Marie Souriau. The conference was one in the series of international meetings of the Seminaire Sud Rhodanien de Goometrie, an organization of geometers and mathematical physicists at the Universities of Avignon, Lyon, Mar seille, and Montpellier. The scientific interests of Souriau, one of the founders of geometric quantization, range from classical mechanics (symplectic geometry) and quantization problems to general relativity and astrophysics. The themes of this conference cover "only" the first two of these four areas. The subjects treated in this volume could be classified in the follow ing way: symplectic and Poisson geometry (Arms-Wilbour, Bloch-Ratiu, Brylinski-Kostant, Cushman-Sjamaar, Dufour, Lichnerowicz, Medina, Ouzilou), classical mechanics (Benenti, Holm-Marsden, Marle) , particles and fields in physics (Garcia Perez-Munoz Masque, Gotay, Montgomery, Ne'eman-Sternberg, Sniatycki) and quantization (Blattner, Huebschmann, Karasev, Rawnsley, Roger, Rosso, Weinstein). However, these subjects are so interrelated that a classification by headings such as "pure differential geometry, applications of Lie groups, constrained systems in physics, etc. ," would have produced a completely different clustering! The list of authors is not quite identical to the list of speakers at the conference. M. Karasev was invited but unable to attend; C. Itzykson and M. Vergne spoke on work which is represented here only by the title of Itzykson's talk (Surfaces triangulees et integration matricielle) and a summary of Vergne's talk.

Deformation Theory of Algebras and Structures and Applications

Deformation Theory of Algebras and Structures and Applications
Title Deformation Theory of Algebras and Structures and Applications PDF eBook
Author Michiel Hazewinkel
Publisher Springer Science & Business Media
Pages 1024
Release 2012-12-06
Genre Mathematics
ISBN 9400930577

Download Deformation Theory of Algebras and Structures and Applications Book in PDF, Epub and Kindle

This volume is a result of a meeting which took place in June 1986 at 'll Ciocco" in Italy entitled 'Deformation theory of algebras and structures and applications'. It appears somewhat later than is perhaps desirable for a volume resulting from a summer school. In return it contains a good many results which were not yet available at the time of the meeting. In particular it is now abundantly clear that the Deformation theory of algebras is indeed central to the whole philosophy of deformations/perturbations/stability. This is one of the main results of the 254 page paper below (practically a book in itself) by Gerstenhaber and Shack entitled "Algebraic cohomology and defor mation theory". Two of the main philosphical-methodological pillars on which deformation theory rests are the fol lowing • (Pure) To study a highly complicated object, it is fruitful to study the ways in which it can arise as a limit of a family of simpler objects: "the unraveling of complicated structures" . • (Applied) If a mathematical model is to be applied to the real world there will usually be such things as coefficients which are imperfectly known. Thus it is important to know how the behaviour of a model changes as it is perturbed (deformed).

Lie Theory and Geometry

Lie Theory and Geometry
Title Lie Theory and Geometry PDF eBook
Author Jean-Luc Brylinski
Publisher Springer Science & Business Media
Pages 629
Release 2012-12-06
Genre Mathematics
ISBN 1461202612

Download Lie Theory and Geometry Book in PDF, Epub and Kindle

This volume, dedicated to Bertram Kostant on the occasion of his 65th birthday, is a collection of 22 invited papers by leading mathematicians working in Lie theory, geometry, algebra, and mathematical physics. Kostant’s fundamental work in all these areas has provided deep new insights and connections, and has created new fields of research. The papers gathered here present original research articles as well as expository papers, broadly reflecting the range of Kostant’s work.

Symplectic Geometry, Groupoids, and Integrable Systems

Symplectic Geometry, Groupoids, and Integrable Systems
Title Symplectic Geometry, Groupoids, and Integrable Systems PDF eBook
Author Pierre Dazord
Publisher Springer Science & Business Media
Pages 318
Release 2012-12-06
Genre Mathematics
ISBN 1461397197

Download Symplectic Geometry, Groupoids, and Integrable Systems Book in PDF, Epub and Kindle

The papers, some of which are in English, the rest in French, in this volume are based on lectures given during the meeting of the Seminare Sud Rhodanien de Geometrie (SSRG) organized at the Mathematical Sciences Research Institute in 1989. The SSRG was established in 1982 by geometers and mathematical physicists with the aim of developing and coordinating research in symplectic geometry and its applications to analysis and mathematical physics. Among the subjects discussed at the meeting, a special role was given to the theory of symplectic groupoids, the subject of fruitful collaboration involving geometers from Berkeley, Lyon, and Montpellier.