Defects In Functional Materials

Defects In Functional Materials
Title Defects In Functional Materials PDF eBook
Author Chi-chung Francis Ling
Publisher World Scientific
Pages 338
Release 2020-08-21
Genre Science
ISBN 9811203180

Download Defects In Functional Materials Book in PDF, Epub and Kindle

The research of functional materials has attracted extensive attention in recent years, and its advancement nitrifies the developments of modern sciences and technologies like green sciences and energy, aerospace, medical and health, telecommunications, and information technology. The present book aims to summarize the research activities carried out in recent years devoting to the understanding of the physics and chemistry of how the defects play a role in the electrical, optical and magnetic properties and the applications of the different functional materials in the fields of magnetism, optoelectronic, and photovoltaic etc.

Functional Materials

Functional Materials
Title Functional Materials PDF eBook
Author S. Banerjee
Publisher Elsevier
Pages 731
Release 2011-12-09
Genre Science
ISBN 0123851432

Download Functional Materials Book in PDF, Epub and Kindle

Functional materials have assumed a very prominent position in several high-tech areas. Such materials are not being classified on the basis of their origin, nature of bonding or processing techniques but are classified on the basis of the functions they can perform. This is a significant departure from the earlier schemes in which materials were described as metals, alloys, ceramics, polymers, glass materials etc. Several new processing techniques have also evolved in the recent past. Because of the diversity of materials and their functions it has become extremely difficult to obtain information from single source. Functional Materials: Preparation, Processing and Applications provides a comprehensive review of the latest developments. - Serves as a ready reference for Chemistry, Physics and Materials Science researchers by covering a wide range of functional materials in one book - Aids in the design of new materials by emphasizing structure or microstructure – property correlation - Covers the processing of functional materials in detail, which helps in conceptualizing the applications of them

Elements of Structures and Defects of Crystalline Materials

Elements of Structures and Defects of Crystalline Materials
Title Elements of Structures and Defects of Crystalline Materials PDF eBook
Author Tsang-Tse Fang
Publisher Elsevier
Pages 233
Release 2018-01-25
Genre Technology & Engineering
ISBN 0128142693

Download Elements of Structures and Defects of Crystalline Materials Book in PDF, Epub and Kindle

Elements of Structures and Defects of Crystalline Materials has been written to cover not only the fundamental principles behind structures and defects, but also to provide deep insights into understanding the relationships of properties, defect chemistry and processing of the concerned materials. Part One deals with structures, while Part Two covers defects. Since the knowledge of the electron configuration of elements is necessary for understanding the nature of chemical bonding, it is discussed in the opening chapter. Chapter Two then describes the bonding formation within the crystal structures of varied materials, with Chapter Three delving into how a material's structure is formed. In view of the importance of the effects of the structure distortion on the material properties due to the fields, the related topics have been included in section 3.4. Moreover, several materials still under intensive investigation have been illustrated to provide deep insights into understanding the effects of the relationships of processing, structures and defects on the material properties. The defects of materials are explored in Part II. Chapter 4 deals with the point defects of metal and ceramics. Chapter 5 covers the fundamentals of the characteristics of dislocations, wherein physics and the atomic mechanics of several issues have been described in detail. In view of the significant influence of the morphologies including size, shape and distribution of grains, phases on the microstructure evolution, and, in turn, the properties of materials, the final chapter focuses on the fundamentals of interface energies, including single phase (grain) boundary and interphase boundary. - Discusses the relationship between properties, defect chemistry and the processing of materials - Presents coverage of the fundamental principles behind structures and defects - Includes information on two-dimensional and three-dimensional imperfections in solids

Advanced Calculations for Defects in Materials

Advanced Calculations for Defects in Materials
Title Advanced Calculations for Defects in Materials PDF eBook
Author Audrius Alkauskas
Publisher John Wiley & Sons
Pages 374
Release 2011-05-16
Genre Science
ISBN 3527638539

Download Advanced Calculations for Defects in Materials Book in PDF, Epub and Kindle

This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling. The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances. The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.

Defects and Impurities in Silicon Materials

Defects and Impurities in Silicon Materials
Title Defects and Impurities in Silicon Materials PDF eBook
Author Yutaka Yoshida
Publisher Springer
Pages 498
Release 2016-03-30
Genre Technology & Engineering
ISBN 4431558004

Download Defects and Impurities in Silicon Materials Book in PDF, Epub and Kindle

This book emphasizes the importance of the fascinating atomistic insights into the defects and the impurities as well as the dynamic behaviors in silicon materials, which have become more directly accessible over the past 20 years. Such progress has been made possible by newly developed experimental methods, first principle theories, and computer simulation techniques. The book is aimed at young researchers, scientists, and technicians in related industries. The main purposes are to provide readers with 1) the basic physics behind defects in silicon materials, 2) the atomistic modeling as well as the characterization techniques related to defects and impurities in silicon materials, and 3) an overview of the wide range of the research fields involved.

Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials

Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials
Title Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials PDF eBook
Author Paula M. Vilarinho
Publisher Springer Science & Business Media
Pages 503
Release 2006-06-15
Genre Science
ISBN 1402030193

Download Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials Book in PDF, Epub and Kindle

As the characteristic dimensions of electronic devices continue to shrink, the ability to characterize their electronic properties at the nanometer scale has come to be of outstanding importance. In this sense, Scanning Probe Microscopy (SPM) is becoming an indispensable tool, playing a key role in nanoscience and nanotechnology. SPM is opening new opportunities to measure semiconductor electronic properties with unprecedented spatial resolution. SPM is being successfully applied for nanoscale characterization of ferroelectric thin films. In the area of functional molecular materials it is being used as a probe to contact molecular structures in order to characterize their electrical properties, as a manipulator to assemble nanoparticles and nanotubes into simple devices, and as a tool to pattern molecular nanostructures. This book provides in-depth information on new and emerging applications of SPM to the field of materials science, namely in the areas of characterisation, device application and nanofabrication of functional materials. Starting with the general properties of functional materials the authors present an updated overview of the fundamentals of Scanning Probe Techniques and the application of SPM techniques to the characterization of specified functional materials such as piezoelectric and ferroelectric and to the fabrication of some nano electronic devices. Its uniqueness is in the combination of the fundamental nanoscale research with the progress in fabrication of realistic nanodevices. By bringing together the contribution of leading researchers from the materials science and SPM communities, relevant information is conveyed that allows researchers to learn more about the actual developments in SPM applied to functional materials. This book will contribute to the continuous education and development in the field of nanotechnology.

Ferroic Functional Materials

Ferroic Functional Materials
Title Ferroic Functional Materials PDF eBook
Author Jörg Schröder
Publisher Springer
Pages 293
Release 2017-11-23
Genre Technology & Engineering
ISBN 3319688839

Download Ferroic Functional Materials Book in PDF, Epub and Kindle

The book covers experiments and theory in the fields of ferroelectrics, ferromagnets, ferroelastics, and multiferroics. Topics include experimental preparation and characterization of magnetoelectric multiferroics, the modeling of ferroelectric and ferromagnetic materials, the formation of ferroic microstructures and their continuum-mechanical modeling, computational homogenization, and the algorithmic treatment in the framework of numerical solution strategies.