Machine Learning Techniques for Space Weather

Machine Learning Techniques for Space Weather
Title Machine Learning Techniques for Space Weather PDF eBook
Author Enrico Camporeale
Publisher Elsevier
Pages 454
Release 2018-05-31
Genre Science
ISBN 0128117893

Download Machine Learning Techniques for Space Weather Book in PDF, Epub and Kindle

Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms

Unsupervised Learning in Space and Time

Unsupervised Learning in Space and Time
Title Unsupervised Learning in Space and Time PDF eBook
Author Marius Leordeanu
Publisher Springer Nature
Pages 315
Release 2020-04-17
Genre Computers
ISBN 3030421287

Download Unsupervised Learning in Space and Time Book in PDF, Epub and Kindle

This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field. Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts. Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way. Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines.

Machine Learning in Heliophysics

Machine Learning in Heliophysics
Title Machine Learning in Heliophysics PDF eBook
Author Thomas Berger
Publisher Frontiers Media SA
Pages 240
Release 2021-11-24
Genre Science
ISBN 2889716716

Download Machine Learning in Heliophysics Book in PDF, Epub and Kindle

Deep Learning Illustrated

Deep Learning Illustrated
Title Deep Learning Illustrated PDF eBook
Author Jon Krohn
Publisher Addison-Wesley Professional
Pages 725
Release 2019-08-05
Genre Computers
ISBN 0135121728

Download Deep Learning Illustrated Book in PDF, Epub and Kindle

"The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence
Title Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence PDF eBook
Author Nikola K. Kasabov
Publisher Springer
Pages 742
Release 2018-08-29
Genre Technology & Engineering
ISBN 3662577151

Download Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence Book in PDF, Epub and Kindle

Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author’s contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.

Deep Learning for Robot Perception and Cognition

Deep Learning for Robot Perception and Cognition
Title Deep Learning for Robot Perception and Cognition PDF eBook
Author Alexandros Iosifidis
Publisher Academic Press
Pages 638
Release 2022-02-04
Genre Technology & Engineering
ISBN 0323885721

Download Deep Learning for Robot Perception and Cognition Book in PDF, Epub and Kindle

Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis

Learning Deep Architectures for AI

Learning Deep Architectures for AI
Title Learning Deep Architectures for AI PDF eBook
Author Yoshua Bengio
Publisher Now Publishers Inc
Pages 145
Release 2009
Genre Computational learning theory
ISBN 1601982941

Download Learning Deep Architectures for AI Book in PDF, Epub and Kindle

Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.