Data-driven Modeling of Mechanical Behaviors of Additively Manufactured Materials

Data-driven Modeling of Mechanical Behaviors of Additively Manufactured Materials
Title Data-driven Modeling of Mechanical Behaviors of Additively Manufactured Materials PDF eBook
Author Ziyang Zhang
Publisher
Pages 0
Release 2022
Genre
ISBN

Download Data-driven Modeling of Mechanical Behaviors of Additively Manufactured Materials Book in PDF, Epub and Kindle

Additive manufacturing (AM) is a revolutionary technology that greatly improves the flexibility of fabricating parts with complex structures and eliminates the cost of making molds. While AM techniques offer unique benefits over traditional manufacturing processes, it is challenging to predict the mechanical behaviors of additively manufactured parts based on design and process parameters. With recent advances in machine learning, data-driven methods have the potential to overcome such limitations. In this work, data-driven modeling frameworks were proposed to predict the tensile, flexural, and compressive behaviors of additively manufactured plastics and composites. Ensemble learning was used to predict the tensile strength of polylactic acid (PLA) with cooperative AM process parameters. A 12.97% mean absolute percentage error (MAPE) was achieved by combining lasso, support vector regression, and extreme gradient boosting in the computational framework. An enhanced ensemble learning method that combines eight different machine learning algorithms was introduced to predict the flexural strength of continuous carbon fiber and short carbon fiber reinforced nylon (CCF-SCFRN) composites with design parameters. Learned knowledge from CCF-SCFRN composites was transferred to continuous glass fiber and short carbon fiber reinforced nylon (CGF-SCFRN) composites for flexural stress-strain curve prediction using an optimal transport (OT) integrated transfer learning framework. Compared with traditional transfer learning, the OT-integrated framework improves the stress-strain curve prediction accuracy by 10.46% in terms of MAPE. The transfer learning framework was further demonstrated in predicting the compressive stress-strain curves of PLA scaffolds with both AM process and design parameters. Three cases were studied by selecting different parameters for domain transfer to validate the generalizability of the proposed framework in predicting mechanical behaviors of additively manufactured materials with limited data.

Data-Driven Modeling for Additive Manufacturing of Metals

Data-Driven Modeling for Additive Manufacturing of Metals
Title Data-Driven Modeling for Additive Manufacturing of Metals PDF eBook
Author National Academies of Sciences, Engineering, and Medicine
Publisher National Academies Press
Pages 79
Release 2019-11-09
Genre Technology & Engineering
ISBN 0309494206

Download Data-Driven Modeling for Additive Manufacturing of Metals Book in PDF, Epub and Kindle

Additive manufacturing (AM) is the process in which a three-dimensional object is built by adding subsequent layers of materials. AM enables novel material compositions and shapes, often without the need for specialized tooling. This technology has the potential to revolutionize how mechanical parts are created, tested, and certified. However, successful real-time AM design requires the integration of complex systems and often necessitates expertise across domains. Simulation-based design approaches, such as those applied in engineering product design and material design, have the potential to improve AM predictive modeling capabilities, particularly when combined with existing knowledge of the underlying mechanics. These predictive models have the potential to reduce the cost of and time for concept-to-final-product development and can be used to supplement experimental tests. The National Academies convened a workshop on October 24-26, 2018 to discuss the frontiers of mechanistic data-driven modeling for AM of metals. Topics of discussion included measuring and modeling process monitoring and control, developing models to represent microstructure evolution, alloy design, and part suitability, modeling phases of process and machine design, and accelerating product and process qualification and certification. These topics then led to the assessment of short-, immediate-, and long-term challenges in AM. This publication summarizes the presentations and discussions from the workshop.

Data-driven Modeling for Additive Manufacturing of Metals

Data-driven Modeling for Additive Manufacturing of Metals
Title Data-driven Modeling for Additive Manufacturing of Metals PDF eBook
Author
Publisher
Pages 66
Release 2019
Genre Electronic books
ISBN 9780309494212

Download Data-driven Modeling for Additive Manufacturing of Metals Book in PDF, Epub and Kindle

"Additive manufacturing (AM) is the process in which a three-dimensional object is built by adding subsequent layers of materials. AM enables novel material compositions and shapes, often without the need for specialized tooling. This technology has the potential to revolutionize how mechanical parts are created, tested, and certified. However, successful real-time AM design requires the integration of complex systems and often necessitates expertise across domains. Simulation-based design approaches, such as those applied in engineering product design and material design, have the potential to improve AM predictive modeling capabilities, particularly when combined with existing knowledge of the underlying mechanics. These predictive models have the potential to reduce the cost of and time for concept-to-final-product development and can be used to supplement experimental tests. The National Academies convened a workshop on October 24-26, 2018 to discuss the frontiers of mechanistic data-driven modeling for AM of metals. Topics of discussion included measuring and modeling process monitoring and control, developing models to represent microstructure evolution, alloy design, and part suitability, modeling phases of process and machine design, and accelerating product and process qualification and certification. These topics then led to the assessment of short-, immediate-, and long-term challenges in AM. This publication summarizes the presentations and discussions from the workshop"--Publisher's description

Data-Driven Modeling for Additive Manufacturing of Metals

Data-Driven Modeling for Additive Manufacturing of Metals
Title Data-Driven Modeling for Additive Manufacturing of Metals PDF eBook
Author National Academies of Sciences, Engineering, and Medicine
Publisher National Academies Press
Pages 79
Release 2019-10-09
Genre Technology & Engineering
ISBN 0309494230

Download Data-Driven Modeling for Additive Manufacturing of Metals Book in PDF, Epub and Kindle

Additive manufacturing (AM) is the process in which a three-dimensional object is built by adding subsequent layers of materials. AM enables novel material compositions and shapes, often without the need for specialized tooling. This technology has the potential to revolutionize how mechanical parts are created, tested, and certified. However, successful real-time AM design requires the integration of complex systems and often necessitates expertise across domains. Simulation-based design approaches, such as those applied in engineering product design and material design, have the potential to improve AM predictive modeling capabilities, particularly when combined with existing knowledge of the underlying mechanics. These predictive models have the potential to reduce the cost of and time for concept-to-final-product development and can be used to supplement experimental tests. The National Academies convened a workshop on October 24-26, 2018 to discuss the frontiers of mechanistic data-driven modeling for AM of metals. Topics of discussion included measuring and modeling process monitoring and control, developing models to represent microstructure evolution, alloy design, and part suitability, modeling phases of process and machine design, and accelerating product and process qualification and certification. These topics then led to the assessment of short-, immediate-, and long-term challenges in AM. This publication summarizes the presentations and discussions from the workshop.

Data-driven Modeling Implementation Within Materials Development and Manufacturing Systems

Data-driven Modeling Implementation Within Materials Development and Manufacturing Systems
Title Data-driven Modeling Implementation Within Materials Development and Manufacturing Systems PDF eBook
Author Allen Jonathan Roman
Publisher
Pages 0
Release 2023
Genre
ISBN

Download Data-driven Modeling Implementation Within Materials Development and Manufacturing Systems Book in PDF, Epub and Kindle

Predicting polymeric material behavior during processing and predicting final part properties continues to be a strong research focus within the scientific community as it involves taking into consideration a wide range of time-dependent variables. By use of data-driven modeling, the materials development process can be accelerated, and the highly predictive modeling techniques can facilitate the development of smart manufacturing systems. This dissertation worked on solving polymer engineering problems by use of data-driven modeling techniques. The first strategy was using data-driven modeling to provide a predictive model with statistical insights of the injection molding process to ensure part quality is maximized for a highly viscoelastic material blend. By injection molding highly viscoelastic materials, the probability of part defects is increased, therefore, it was crucial to use advanced computational techniques to understand the nuances of this highly non-linear process and to predict the outcome before creating material waste from faulty trials. The second strategy was in the use of data-driven modeling for reverse engineering purposes, specifically within materials development. By combining experimental characterization and data-driven modeling, algorithms were developed and compared to prove how highly predictive models can be used as reverse engineering toolboxes. This ultimately informed users of the optimal formulation which would reach the specified target material properties. The final strategy explored using data-driven modeling to validate the high influence of viscous heating within the pressure melt removal process, therefore, work was done in implementing a viscous heating system within a fused filament fabrication (FFF) 3D printer to accelerate the 3D printing process. The instrumented FFF 3D printer proved capable of accelerating print speeds and improving mechanical performance of 3D printed parts, working towards solving two of the largest bottlenecks within additive manufacturing: lead times and part quality. Given the unique capabilities of the data-driven modeling, the novel 3D printer was tested and evaluated via data-driven modeling to provide statistical information regarding which processing parameters were the most influential for improving overall performance of the 3D printing system. The results of this work provide a basis for future research endeavors related to combining data-driven modeling and polymer science, such as in optimizing the newly developed viscous heating 3D printer.

Tribology of Additively Manufactured Materials

Tribology of Additively Manufactured Materials
Title Tribology of Additively Manufactured Materials PDF eBook
Author Pradeep Menezes
Publisher Elsevier
Pages 362
Release 2022-08-12
Genre Technology & Engineering
ISBN 0128213299

Download Tribology of Additively Manufactured Materials Book in PDF, Epub and Kindle

Tribology of Additively Manufactured Materials: Fundamentals, Modeling, and Applications starts with a look at the history, methods and mechanics of additive manufacturing (AM), focusing on power bed fusion-based and direct energy deposition-based additive manufacturing. Following sections of the book provide a foundational background in the fundamentals of tribology, covering the basics of surface engineering, friction and wear, corrosion and tribocorrosion, and the tribological considerations of a variety of AM materials, such as friction and wear in non-metallic and metallic AM materials, degradation in non-metallic AM components, and corrosion and tribocorrosion in AM components. The book then concludes with a section covering modeling and simulation scenarios and challenges related to the tribology of AM materials, providing readers with the processing conditions needed to extend and strengthen the lifetime and durability of AM materials and components. - Provides theoretical, experimental and computational data for a better understanding of the complex tribological behaviors in additively manufactured components - Discusses applications of additively manufactured components, considering their tribological properties - Studies how unique surface roughness and texture develop in additively manufactured components and how these unique characteristics affect their tribological function - Outlines variables, additive manufacturing methods and performance of additively manufactured components - Equips readers with a better understanding of degradation effects due to tribology and corrosion

Quality Analysis of Additively Manufactured Metals

Quality Analysis of Additively Manufactured Metals
Title Quality Analysis of Additively Manufactured Metals PDF eBook
Author Javad Kadkhodapour
Publisher Elsevier
Pages 858
Release 2022-11-30
Genre Technology & Engineering
ISBN 0323886493

Download Quality Analysis of Additively Manufactured Metals Book in PDF, Epub and Kindle

Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties provides readers with a firm understanding of the failure and fatigue processes of additively manufactured metals. With a focus on computational methods, the book analyzes the process-microstructure-property relationship of these metals and how it affects their quality while also providing numerical, analytical, and experimental data for material design and investigation optimization. It outlines basic additive manufacturing processes for metals, strategies for modeling the microstructural features of metals and how these features differ based on the manufacturing process, and more.Improvement of additively manufactured metals through predictive simulation methods and microdamage and micro-failure in quasi-static and cyclic loading scenarios are covered, as are topology optimization methods and residual stress analysis techniques. The book concludes with a section featuring case studies looking at additively manufactured metals in automotive, biomedical and aerospace settings. - Provides insights and outlines techniques for analyzing why additively manufactured metals fail and strategies for avoiding those failures - Defines key terms and concepts related to the failure analysis, quality assurance and optimization processes of additively manufactured metals - Includes simulation results, experimental data and case studies