Crossed Products by Hecke Pairs
Title | Crossed Products by Hecke Pairs PDF eBook |
Author | Rui Palma |
Publisher | American Mathematical Soc. |
Pages | 156 |
Release | 2018-03-19 |
Genre | Mathematics |
ISBN | 1470428091 |
The author develops a theory of crossed products by actions of Hecke pairs , motivated by applications in non-abelian -duality. His approach gives back the usual crossed product construction whenever is a group and retains many of the aspects of crossed products by groups. The author starts by laying the -algebraic foundations of these crossed products by Hecke pairs and exploring their representation theory and then proceeds to study their different -completions. He establishes that his construction coincides with that of Laca, Larsen and Neshveyev whenever they are both definable and, as an application of his theory, he proves a Stone-von Neumann theorem for Hecke pairs which encompasses the work of an Huef, Kaliszewski and Raeburn.
On Non-Generic Finite Subgroups of Exceptional Algebraic Groups
Title | On Non-Generic Finite Subgroups of Exceptional Algebraic Groups PDF eBook |
Author | Alastair J. Litterick |
Publisher | American Mathematical Soc. |
Pages | 168 |
Release | 2018-05-29 |
Genre | Mathematics |
ISBN | 1470428377 |
The study of finite subgroups of a simple algebraic group $G$ reduces in a sense to those which are almost simple. If an almost simple subgroup of $G$ has a socle which is not isomorphic to a group of Lie type in the underlying characteristic of $G$, then the subgroup is called non-generic. This paper considers non-generic subgroups of simple algebraic groups of exceptional type in arbitrary characteristic.
Algebraic $\overline {\mathbb {Q}}$-Groups as Abstract Groups
Title | Algebraic $\overline {\mathbb {Q}}$-Groups as Abstract Groups PDF eBook |
Author | Olivier Frécon |
Publisher | American Mathematical Soc. |
Pages | 112 |
Release | 2018-10-03 |
Genre | Mathematics |
ISBN | 1470429233 |
The author analyzes the abstract structure of algebraic groups over an algebraically closed field . For of characteristic zero and a given connected affine algebraic Q -group, the main theorem describes all the affine algebraic Q -groups such that the groups and are isomorphic as abstract groups. In the same time, it is shown that for any two connected algebraic Q -groups and , the elementary equivalence of the pure groups and implies that they are abstractly isomorphic. In the final section, the author applies his results to characterize the connected algebraic groups, all of whose abstract automorphisms are standard, when is either Q or of positive characteristic. In characteristic zero, a fairly general criterion is exhibited.
Diophantine Approximation and the Geometry of Limit Sets in Gromov Hyperbolic Metric Spaces
Title | Diophantine Approximation and the Geometry of Limit Sets in Gromov Hyperbolic Metric Spaces PDF eBook |
Author | Lior Fishman |
Publisher | American Mathematical Soc. |
Pages | 150 |
Release | 2018-08-09 |
Genre | Mathematics |
ISBN | 1470428865 |
In this paper, the authors provide a complete theory of Diophantine approximation in the limit set of a group acting on a Gromov hyperbolic metric space. This summarizes and completes a long line of results by many authors, from Patterson's classic 1976 paper to more recent results of Hersonsky and Paulin (2002, 2004, 2007). The authors consider concrete examples of situations which have not been considered before. These include geometrically infinite Kleinian groups, geometrically finite Kleinian groups where the approximating point is not a fixed point of any element of the group, and groups acting on infinite-dimensional hyperbolic space. Moreover, in addition to providing much greater generality than any prior work of which the authors are aware, the results also give new insight into the nature of the connection between Diophantine approximation and the geometry of the limit set within which it takes place. Two results are also contained here which are purely geometric: a generalization of a theorem of Bishop and Jones (1997) to Gromov hyperbolic metric spaces, and a proof that the uniformly radial limit set of a group acting on a proper geodesic Gromov hyperbolic metric space has zero Patterson–Sullivan measure unless the group is quasiconvex-cocompact. The latter is an application of a Diophantine theorem.
Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem
Title | Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem PDF eBook |
Author | Gabriella Pinzari |
Publisher | American Mathematical Soc. |
Pages | 104 |
Release | 2018-10-03 |
Genre | Mathematics |
ISBN | 1470441020 |
The author proves the existence of an almost full measure set of -dimensional quasi-periodic motions in the planetary problem with masses, with eccentricities arbitrarily close to the Levi–Civita limiting value and relatively high inclinations. This extends previous results, where smallness of eccentricities and inclinations was assumed. The question had been previously considered by V. I. Arnold in the 1960s, for the particular case of the planar three-body problem, where, due to the limited number of degrees of freedom, it was enough to use the invariance of the system by the SO(3) group. The proof exploits nice parity properties of a new set of coordinates for the planetary problem, which reduces completely the number of degrees of freedom for the system (in particular, its degeneracy due to rotations) and, moreover, is well fitted to its reflection invariance. It allows the explicit construction of an associated close to be integrable system, replacing Birkhoff normal form, a common tool of previous literature.
Bellman Function for Extremal Problems in BMO II: Evolution
Title | Bellman Function for Extremal Problems in BMO II: Evolution PDF eBook |
Author | Paata Ivanisvili |
Publisher | American Mathematical Soc. |
Pages | 148 |
Release | 2018-10-03 |
Genre | Mathematics |
ISBN | 1470429543 |
In a previous study, the authors built the Bellman function for integral functionals on the space. The present paper provides a development of the subject. They abandon the majority of unwanted restrictions on the function that generates the functional. It is the new evolutional approach that allows the authors to treat the problem in its natural setting. What is more, these new considerations lighten dynamical aspects of the Bellman function, in particular, the evolution of its picture.
On Mesoscopic Equilibrium for Linear Statistics in Dyson's Brownian Motion
Title | On Mesoscopic Equilibrium for Linear Statistics in Dyson's Brownian Motion PDF eBook |
Author | Maurice Duits |
Publisher | American Mathematical Soc. |
Pages | 130 |
Release | 2018-10-03 |
Genre | Mathematics |
ISBN | 1470429640 |
In this paper the authors study mesoscopic fluctuations for Dyson's Brownian motion with β=2 . Dyson showed that the Gaussian Unitary Ensemble (GUE) is the invariant measure for this stochastic evolution and conjectured that, when starting from a generic configuration of initial points, the time that is needed for the GUE statistics to become dominant depends on the scale we look at: The microscopic correlations arrive at the equilibrium regime sooner than the macrosopic correlations. The authors investigate the transition on the intermediate, i.e. mesoscopic, scales. The time scales that they consider are such that the system is already in microscopic equilibrium (sine-universality for the local correlations), but have not yet reached equilibrium at the macrosopic scale. The authors describe the transition to equilibrium on all mesoscopic scales by means of Central Limit Theorems for linear statistics with sufficiently smooth test functions. They consider two situations: deterministic initial points and randomly chosen initial points. In the random situation, they obtain a transition from the classical Central Limit Theorem for independent random variables to the one for the GUE.