Convex Bodies
Title | Convex Bodies PDF eBook |
Author | Rolf Schneider |
Publisher | Cambridge University Press |
Pages | 506 |
Release | 1993-02-25 |
Genre | Mathematics |
ISBN | 0521352207 |
A comprehensive introduction to convex bodies giving full proofs for some deeper theorems which have never previously been brought together.
Convex Bodies: The Brunn–Minkowski Theory
Title | Convex Bodies: The Brunn–Minkowski Theory PDF eBook |
Author | Rolf Schneider |
Publisher | Cambridge University Press |
Pages | 759 |
Release | 2014 |
Genre | Mathematics |
ISBN | 1107601010 |
A complete presentation of a central part of convex geometry, from basics for beginners, to the exposition of current research.
Convex Bodies: The Brunn–Minkowski Theory
Title | Convex Bodies: The Brunn–Minkowski Theory PDF eBook |
Author | Rolf Schneider |
Publisher | Cambridge University Press |
Pages | 752 |
Release | 2013-10-31 |
Genre | Mathematics |
ISBN | 1107471613 |
At the heart of this monograph is the Brunn–Minkowski theory, which can be used to great effect in studying such ideas as volume and surface area and their generalizations. In particular, the notions of mixed volume and mixed area measure arise naturally and the fundamental inequalities that are satisfied by mixed volumes are considered here in detail. The author presents a comprehensive introduction to convex bodies, including full proofs for some deeper theorems. The book provides hints and pointers to connections with other fields and an exhaustive reference list. This second edition has been considerably expanded to reflect the rapid developments of the past two decades. It includes new chapters on valuations on convex bodies, on extensions like the Lp Brunn–Minkowski theory, and on affine constructions and inequalities. There are also many supplements and updates to the original chapters, and a substantial expansion of chapter notes and references.
Lectures on Convex Geometry
Title | Lectures on Convex Geometry PDF eBook |
Author | Daniel Hug |
Publisher | Springer Nature |
Pages | 287 |
Release | 2020-08-27 |
Genre | Mathematics |
ISBN | 3030501809 |
This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.
Theory of Convex Bodies
Title | Theory of Convex Bodies PDF eBook |
Author | Tommy Bonnesen |
Publisher | |
Pages | 192 |
Release | 1987 |
Genre | Mathematics |
ISBN |
The Volume of Convex Bodies and Banach Space Geometry
Title | The Volume of Convex Bodies and Banach Space Geometry PDF eBook |
Author | Gilles Pisier |
Publisher | Cambridge University Press |
Pages | 270 |
Release | 1999-05-27 |
Genre | Mathematics |
ISBN | 9780521666350 |
A self-contained presentation of results relating the volume of convex bodies and Banach space geometry.
Geometry of Isotropic Convex Bodies
Title | Geometry of Isotropic Convex Bodies PDF eBook |
Author | Silouanos Brazitikos |
Publisher | American Mathematical Soc. |
Pages | 618 |
Release | 2014-04-24 |
Genre | Mathematics |
ISBN | 1470414562 |
The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.