Functional Analysis and Control Theory
Title | Functional Analysis and Control Theory PDF eBook |
Author | Stefan Rolewicz |
Publisher | Springer Science & Business Media |
Pages | 550 |
Release | 1987-10-31 |
Genre | Mathematics |
ISBN | 9789027721860 |
Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then, It is that they can't see the problem. one day, perhaps you will find the final G.K. Chesterton, The Scandal of Fa question. ther Brown 'The point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, cod ing theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.
Functional Analysis, Calculus of Variations and Optimal Control
Title | Functional Analysis, Calculus of Variations and Optimal Control PDF eBook |
Author | Francis Clarke |
Publisher | Springer Science & Business Media |
Pages | 589 |
Release | 2013-02-06 |
Genre | Mathematics |
ISBN | 1447148207 |
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Nonsmooth Analysis and Control Theory
Title | Nonsmooth Analysis and Control Theory PDF eBook |
Author | Francis H. Clarke |
Publisher | Springer Science & Business Media |
Pages | 288 |
Release | 2008-01-10 |
Genre | Mathematics |
ISBN | 0387226257 |
A clear and succinct presentation of the essentials of this subject, together with some of its applications and a generous helping of interesting exercises. Following an introductory chapter with a taste of what is to come, the next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject, leading to an efficient, natural, and powerful body of theory. The whole is rounded off with a self-contained introduction to the theory of control of ordinary differential equations. The authors have incorporated a number of new results which clarify the relationships between the different schools of thought in the subject, with the aim of making nonsmooth analysis accessible to a wider audience. End-of-chapter problems offer scope for deeper understanding.
Functional Analysis and Linear Control Theory
Title | Functional Analysis and Linear Control Theory PDF eBook |
Author | J. R. Leigh |
Publisher | Courier Corporation |
Pages | 178 |
Release | 2007-03-16 |
Genre | Technology & Engineering |
ISBN | 048645813X |
Originally published: London; New York: Academic Press, 1980, in series: Mathematics in science and engineering; v. 156.
The Calculus of Variations and Functional Analysis
Title | The Calculus of Variations and Functional Analysis PDF eBook |
Author | L. P. Lebedev |
Publisher | World Scientific |
Pages | 435 |
Release | 2003 |
Genre | Mathematics |
ISBN | 9812794999 |
This volume is aimed at those who are concerned about Chinese medicine - how it works, what its current state is and, most important, how to make full use of it. The audience therefore includes clinicians who want to serve their patients better and patients who are eager to supplement their own conventional treatment. The authors of the book belong to three different fields, modern medicine, Chinese medicine and pharmacology. They provide information from their areas of expertise and concern, attempting to make it comprehensive for users. The approach is macroscopic and philosophical; readers convinced of the philosophy are to seek specific assistance.
Control Theory from the Geometric Viewpoint
Title | Control Theory from the Geometric Viewpoint PDF eBook |
Author | Andrei A. Agrachev |
Publisher | Springer Science & Business Media |
Pages | 440 |
Release | 2004-04-15 |
Genre | Language Arts & Disciplines |
ISBN | 9783540210191 |
This book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers.
Mathematical Control Theory
Title | Mathematical Control Theory PDF eBook |
Author | Eduardo D. Sontag |
Publisher | Springer Science & Business Media |
Pages | 543 |
Release | 2013-11-21 |
Genre | Mathematics |
ISBN | 1461205778 |
Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.