Continuum Mechanics and Plasticity
Title | Continuum Mechanics and Plasticity PDF eBook |
Author | Han-Chin Wu |
Publisher | CRC Press |
Pages | 704 |
Release | 2004-12-20 |
Genre | Technology & Engineering |
ISBN | 0203491998 |
Tremendous advances in computer technologies and methods have precipitated a great demand for refinements in the constitutive models of plasticity. Such refinements include the development of a model that would account for material anisotropy and produces results that compare well with experimental data. Key to developing such models-and to meeting
Basics of Continuum Plasticity
Title | Basics of Continuum Plasticity PDF eBook |
Author | Kwansoo Chung |
Publisher | Springer |
Pages | 360 |
Release | 2018-05-02 |
Genre | Science |
ISBN | 9811083061 |
This book describes the basic principles of plasticity for students and engineers who wish to perform plasticity analyses in their professional lives, and provides an introduction to the application of plasticity theories and basic continuum mechanics in metal forming processes. This book consists of three parts. The first part deals with the characteristics of plasticity and instability under simple tension or compression and plasticity in beam bending and torsion. The second part is designed to provide the basic principles of continuum mechanics, and the last part presents an extension of one-dimensional plasticity to general three-dimensional laws based on the fundamentals of continuum mechanics. Though most parts of the book are written in the context of general plasticity, the last two chapters are specifically devoted to sheet metal forming applications. The homework problems included are designed to reinforce understanding of the concepts involved. This book may be used as a textbook for a one semester course lasting fourteen weeks or longer. This book is intended to be self-sufficient such that readers can study it independently without taking another formal course. However, there are some prerequisites before starting this book, which include a course on engineering mathematics and an introductory course on solid mechanics.
Continuum Mechanics
Title | Continuum Mechanics PDF eBook |
Author | Ellis H. Dill |
Publisher | CRC Press |
Pages | 368 |
Release | 2006-11-10 |
Genre | Science |
ISBN | 1420009826 |
Most books on continuum mechanics focus on elasticity and fluid mechanics. But whether student or practicing professional, modern engineers need a more thorough treatment to understand the behavior of the complex materials and systems in use today. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity offers a complete tour of the subject th
Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity
Title | Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity PDF eBook |
Author | Koichi Hashiguchi |
Publisher | Elsevier |
Pages | 425 |
Release | 2020-06-19 |
Genre | Technology & Engineering |
ISBN | 0128194294 |
Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity empowers readers to fully understand the constitutive equation of finite strain, an essential piece in assessing the deformation/strength of materials and safety of structures. The book starts by providing a foundational overview of continuum mechanics, elasticity and plasticity, then segues into more sophisticated topics such as multiplicative decomposition of deformation gradient tensor with the isoclinic concept and the underlying subloading surface concept. The subloading surface concept insists that the plastic strain rate is not induced suddenly at the moment when the stress reaches the yield surface but it develops continuously as the stress approaches the yield surface, which is crucially important for the precise description of cyclic loading behavior. Then, the exact formulations of the elastoplastic and viscoplastic constitutive equations based on the multiplicative decomposition are expounded in great detail. The book concludes with examples of these concepts and modeling techniques being deployed in real-world applications. Table of Contents: 1. Mathematical Basics 2. General (Curvilinear) Coordinate System 3. Description of Deformation/Rotation in Convected Coordinate System 4. Deformation/Rotation (Rate) Tensors 5. Conservation Laws and Stress Tensors 6. Hyperelastic Equations 7. Development of Elastoplastic Constitutive Equations 8. Multiplicative Decomposition of Deformation Gradient Tensor 9. Multiplicative Hyperelastic-based Plastic and Viscoplastic Constitutive Equations 10. Friction Model: Finite Sliding Theory - Covers both the fundamentals of continuum mechanics and elastoplasticity while also introducing readers to more advanced topics such as the subloading surface model and the multiplicative decomposition among others - Approaches finite elastoplasticity and viscoplasticty theory based on multiplicative decomposition and the subloading surface model - Provides a thorough introduction to the general tensor formulation details for the embedded curvilinear coordinate system and the multiplicative decomposition of the deformation gradient
Continuum Theory of Plasticity
Title | Continuum Theory of Plasticity PDF eBook |
Author | Akhtar S. Khan |
Publisher | John Wiley & Sons |
Pages | 434 |
Release | 1995-02-28 |
Genre | Science |
ISBN | 9780471310433 |
The only modern, up-to-date introduction to plasticity Despite phenomenal progress in plasticity research over the past fifty years, introductory books on plasticity have changed very little. To meet the need for an up-to-date introduction to the field, Akhtar S. Khan and Sujian Huang have written Continuum Theory of Plasticity--a truly modern text which offers a continuum mechanics approach as well as a lucid presentation of the essential classical contributions. The early chapters give the reader a review of elementary concepts of plasticity, the necessary background material on continuum mechanics, and a discussion of the classical theory of plasticity. Recent developments in the field are then explored in sections on the Mroz Multisurface model, the Dafalias and Popov Two Surface model, the non-linear kinematic hardening model, the endochronic theory of plasticity, and numerous topics in finite deformation plasticity theory and strain space formulation for plastic deformation. Final chapters introduce the fundamentals of the micromechanics of plastic deformation and the analytical coupling between deformation of individual crystals and macroscopic material response of the polycrystal aggregate. For graduate students and researchers in engineering mechanics, mechanical, civil, and aerospace engineering, Continuum Theory of Plasticity offers a modern, comprehensive introduction to the entire subject of plasticity.
Continuum Mechanics and Theory of Materials
Title | Continuum Mechanics and Theory of Materials PDF eBook |
Author | Peter Haupt |
Publisher | Springer Science & Business Media |
Pages | 666 |
Release | 2013-03-14 |
Genre | Technology & Engineering |
ISBN | 3662047756 |
The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.
Introduction to Finite Strain Theory for Continuum Elasto-Plasticity
Title | Introduction to Finite Strain Theory for Continuum Elasto-Plasticity PDF eBook |
Author | Koichi Hashiguchi |
Publisher | John Wiley & Sons |
Pages | 371 |
Release | 2012-10-09 |
Genre | Science |
ISBN | 1118437721 |
Comprehensive introduction to finite elastoplasticity, addressing various analytical and numerical analyses & including state-of-the-art theories Introduction to Finite Elastoplasticity presents introductory explanations that can be readily understood by readers with only a basic knowledge of elastoplasticity, showing physical backgrounds of concepts in detail and derivation processes of almost all equations. The authors address various analytical and numerical finite strain analyses, including new theories developed in recent years, and explain fundamentals including the push-forward and pull-back operations and the Lie derivatives of tensors. As a foundation to finite strain theory, the authors begin by addressing the advanced mathematical and physical properties of continuum mechanics. They progress to explain a finite elastoplastic constitutive model, discuss numerical issues on stress computation, implement the numerical algorithms for stress computation into large-deformation finite element analysis and illustrate several numerical examples of boundary-value problems. Programs for the stress computation of finite elastoplastic models explained in this book are included in an appendix, and the code can be downloaded from an accompanying website.