Connecting with Computability
Title | Connecting with Computability PDF eBook |
Author | Liesbeth De Mol |
Publisher | Springer Nature |
Pages | 506 |
Release | 2021-07-01 |
Genre | Computers |
ISBN | 3030800490 |
This book constitutes the proceedings of the 17th Conference on Computability in Europe, CiE 2021, organized by the University of Ghent in July 2021. Due to COVID-19 pandemic the conference was held virtually. The 48 full papers presented in this volume were carefully reviewed and selected from 50 submissions. CiE promotes the development of computability-related science, ranging over mathematics, computer science and applications in various natural and engineering sciences, such as physics and biology, as well as related fields, such as philosophy and history of computing. CiE 2021 had as its motto Connecting with Computability, a clear acknowledgement of the connecting and interdisciplinary nature of the conference series which is all the more important in a time where people are more than ever disconnected from one another due to the COVID-19 pandemic.
Connecting with Computability
Title | Connecting with Computability PDF eBook |
Author | Liesbeth De Mol |
Publisher | Springer |
Pages | 506 |
Release | 2021-07-02 |
Genre | Computers |
ISBN | 9783030800482 |
This book constitutes the proceedings of the 17th Conference on Computability in Europe, CiE 2021, organized by the University of Ghent in July 2021. Due to COVID-19 pandemic the conference was held virtually. The 48 full papers presented in this volume were carefully reviewed and selected from 50 submissions. CiE promotes the development of computability-related science, ranging over mathematics, computer science and applications in various natural and engineering sciences, such as physics and biology, as well as related fields, such as philosophy and history of computing. CiE 2021 had as its motto Connecting with Computability, a clear acknowledgement of the connecting and interdisciplinary nature of the conference series which is all the more important in a time where people are more than ever disconnected from one another due to the COVID-19 pandemic.
Computable Analysis
Title | Computable Analysis PDF eBook |
Author | Klaus Weihrauch |
Publisher | Springer Science & Business Media |
Pages | 312 |
Release | 2000-09-14 |
Genre | Computers |
ISBN | 9783540668176 |
Merging fundamental concepts of analysis and recursion theory to a new exciting theory, this book provides a solid fundament for studying various aspects of computability and complexity in analysis. It is the result of an introductory course given for several years and is written in a style suitable for graduate-level and senior students in computer science and mathematics. Many examples illustrate the new concepts while numerous exercises of varying difficulty extend the material and stimulate readers to work actively on the text.
Computability and Randomness
Title | Computability and Randomness PDF eBook |
Author | André Nies |
Publisher | OUP Oxford |
Pages | 450 |
Release | 2012-03-29 |
Genre | Mathematics |
ISBN | 0191627887 |
The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.
What Can Be Computed?
Title | What Can Be Computed? PDF eBook |
Author | John MacCormick |
Publisher | Princeton University Press |
Pages | 404 |
Release | 2018-05-01 |
Genre | Computers |
ISBN | 0691170665 |
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
Computability and Logic
Title | Computability and Logic PDF eBook |
Author | George S. Boolos |
Publisher | Cambridge University Press |
Pages | 365 |
Release | 2007-09-17 |
Genre | Computers |
ISBN | 0521877520 |
This fifth edition of 'Computability and Logic' covers not just the staple topics of an intermediate logic course such as Godel's incompleteness theorems, but also optional topics that include Turing's theory of computability and Ramsey's theorem.
Computability Theory
Title | Computability Theory PDF eBook |
Author | Rebecca Weber |
Publisher | American Mathematical Soc. |
Pages | 218 |
Release | 2012 |
Genre | Mathematics |
ISBN | 082187392X |
What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.