Concentration of Measure Inequalities in Information Theory, Communications, and Coding
Title | Concentration of Measure Inequalities in Information Theory, Communications, and Coding PDF eBook |
Author | Maxim Raginsky |
Publisher | |
Pages | 256 |
Release | 2014 |
Genre | Computers |
ISBN | 9781601989062 |
Concentration of Measure Inequalities in Information Theory, Communications, and Coding focuses on some of the key modern mathematical tools that are used for the derivation of concentration inequalities, on their links to information theory, and on their various applications to communications and coding.
Concentration of Measure Inequalities in Information Theory, Communications, and Coding
Title | Concentration of Measure Inequalities in Information Theory, Communications, and Coding PDF eBook |
Author | Maxim Raginsky |
Publisher | |
Pages | 247 |
Release | 2018 |
Genre | Concentration functions |
ISBN | 9781680835359 |
Concentration inequalities have been the subject of exciting developments during the last two decades, and have been intensively studied and used as a powerful tool in various areas. These include convex geometry, functional analysis, statistical physics, mathematical statistics, pure and applied probability theory (e.g., concentration of measure phenomena in random graphs, random matrices, and percolation), information theory, theoretical computer science, learning theory, and dynamical systems. This monograph focuses on some of the key modern mathematical tools that are used for the derivation of concentration inequalities, on their links to information theory, and on their various applications to communications and coding. In addition to being a survey, this monograph also includes various new recent results derived by the authors.
Concentration Inequalities
Title | Concentration Inequalities PDF eBook |
Author | Stéphane Boucheron |
Publisher | Oxford University Press |
Pages | 492 |
Release | 2013-02-07 |
Genre | Mathematics |
ISBN | 0199535256 |
Describes the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.
High-Dimensional Probability
Title | High-Dimensional Probability PDF eBook |
Author | Roman Vershynin |
Publisher | Cambridge University Press |
Pages | 299 |
Release | 2018-09-27 |
Genre | Business & Economics |
ISBN | 1108415199 |
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Convexity and Concentration
Title | Convexity and Concentration PDF eBook |
Author | Eric Carlen |
Publisher | Springer |
Pages | 620 |
Release | 2017-04-20 |
Genre | Mathematics |
ISBN | 1493970054 |
This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute of Mathematics and its Applications during the Spring 2015 where geometric analysis, convex geometry and concentration phenomena were the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The volume is organized into two parts. Part I contains those contributions that focus primarily on problems motivated by probability theory, while Part II contains those contributions that focus primarily on problems motivated by convex geometry and geometric analysis. This book will be of use to those who research convex geometry, geometric analysis and probability directly or apply such methods in other fields.
Information Theory and Statistics
Title | Information Theory and Statistics PDF eBook |
Author | Imre Csiszár |
Publisher | Now Publishers Inc |
Pages | 128 |
Release | 2004 |
Genre | Computers |
ISBN | 9781933019055 |
Information Theory and Statistics: A Tutorial is concerned with applications of information theory concepts in statistics, in the finite alphabet setting. The topics covered include large deviations, hypothesis testing, maximum likelihood estimation in exponential families, analysis of contingency tables, and iterative algorithms with an "information geometry" background. Also, an introduction is provided to the theory of universal coding, and to statistical inference via the minimum description length principle motivated by that theory. The tutorial does not assume the reader has an in-depth knowledge of Information Theory or statistics. As such, Information Theory and Statistics: A Tutorial, is an excellent introductory text to this highly-important topic in mathematics, computer science and electrical engineering. It provides both students and researchers with an invaluable resource to quickly get up to speed in the field.
Concentration of Measure for the Analysis of Randomized Algorithms
Title | Concentration of Measure for the Analysis of Randomized Algorithms PDF eBook |
Author | Devdatt P. Dubhashi |
Publisher | Cambridge University Press |
Pages | 213 |
Release | 2009-06-15 |
Genre | Computers |
ISBN | 1139480995 |
Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians.