Nonlinear Analysis on Manifolds. Monge-Ampère Equations

Nonlinear Analysis on Manifolds. Monge-Ampère Equations
Title Nonlinear Analysis on Manifolds. Monge-Ampère Equations PDF eBook
Author Thierry Aubin
Publisher Springer Science & Business Media
Pages 215
Release 2012-12-06
Genre Mathematics
ISBN 1461257344

Download Nonlinear Analysis on Manifolds. Monge-Ampère Equations Book in PDF, Epub and Kindle

This volume is intended to allow mathematicians and physicists, especially analysts, to learn about nonlinear problems which arise in Riemannian Geometry. Analysis on Riemannian manifolds is a field currently undergoing great development. More and more, analysis proves to be a very powerful means for solving geometrical problems. Conversely, geometry may help us to solve certain problems in analysis. There are several reasons why the topic is difficult and interesting. It is very large and almost unexplored. On the other hand, geometric problems often lead to limiting cases of known problems in analysis, sometimes there is even more than one approach, and the already existing theoretical studies are inadequate to solve them. Each problem has its own particular difficulties. Nevertheless there exist some standard methods which are useful and which we must know to apply them. One should not forget that our problems are motivated by geometry, and that a geometrical argument may simplify the problem under investigation. Examples of this kind are still too rare. This work is neither a systematic study of a mathematical field nor the presentation of a lot of theoretical knowledge. On the contrary, I do my best to limit the text to the essential knowledge. I define as few concepts as possible and give only basic theorems which are useful for our topic. But I hope that the reader will find this sufficient to solve other geometrical problems by analysis.

Degenerate Complex Monge-Ampère Equations

Degenerate Complex Monge-Ampère Equations
Title Degenerate Complex Monge-Ampère Equations PDF eBook
Author Vincent Guedj
Publisher
Pages 472
Release
Genre
ISBN 9783037191675

Download Degenerate Complex Monge-Ampère Equations Book in PDF, Epub and Kindle

Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics

Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics
Title Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics PDF eBook
Author Vincent Guedj
Publisher Springer
Pages 315
Release 2012-01-05
Genre Mathematics
ISBN 3642236693

Download Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics Book in PDF, Epub and Kindle

The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson). Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.

Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics

Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics
Title Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics PDF eBook
Author Vincent Guedj
Publisher Springer Science & Business Media
Pages 315
Release 2012-01-06
Genre Mathematics
ISBN 3642236685

Download Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics Book in PDF, Epub and Kindle

The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson). Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.

An Introduction to the Kähler-Ricci Flow

An Introduction to the Kähler-Ricci Flow
Title An Introduction to the Kähler-Ricci Flow PDF eBook
Author Sebastien Boucksom
Publisher Springer
Pages 342
Release 2013-10-02
Genre Mathematics
ISBN 3319008196

Download An Introduction to the Kähler-Ricci Flow Book in PDF, Epub and Kindle

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.

An Introduction to Extremal Kahler Metrics

An Introduction to Extremal Kahler Metrics
Title An Introduction to Extremal Kahler Metrics PDF eBook
Author Gábor Székelyhidi
Publisher American Mathematical Soc.
Pages 210
Release 2014-06-19
Genre Mathematics
ISBN 1470410478

Download An Introduction to Extremal Kahler Metrics Book in PDF, Epub and Kindle

A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.

Ricci Flow and Geometric Applications

Ricci Flow and Geometric Applications
Title Ricci Flow and Geometric Applications PDF eBook
Author Michel Boileau
Publisher Springer
Pages 149
Release 2016-09-09
Genre Mathematics
ISBN 3319423517

Download Ricci Flow and Geometric Applications Book in PDF, Epub and Kindle

Presenting some impressive recent achievements in differential geometry and topology, this volume focuses on results obtained using techniques based on Ricci flow. These ideas are at the core of the study of differentiable manifolds. Several very important open problems and conjectures come from this area and the techniques described herein are used to face and solve some of them. The book’s four chapters are based on lectures given by leading researchers in the field of geometric analysis and low-dimensional geometry/topology, respectively offering an introduction to: the differentiable sphere theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and Kähler–Ricci flow (G. Tian). The lectures will be particularly valuable to young researchers interested in differential manifolds.