Complex Ball Quotients and Line Arrangements in the Projective Plane
Title | Complex Ball Quotients and Line Arrangements in the Projective Plane PDF eBook |
Author | Paula Tretkoff |
Publisher | Princeton University Press |
Pages | 228 |
Release | 2016-02-16 |
Genre | Mathematics |
ISBN | 069114477X |
This book introduces the theory of complex surfaces through a comprehensive look at finite covers of the projective plane branched along line arrangements. Paula Tretkoff emphasizes those finite covers that are free quotients of the complex two-dimensional ball. Tretkoff also includes background on the classical Gauss hypergeometric function of one variable, and a chapter on the Appell two-variable F1 hypergeometric function. The material in this book began as a set of lecture notes, taken by Tretkoff, of a course given by Friedrich Hirzebruch at ETH Zürich in 1996. The lecture notes were then considerably expanded by Hirzebruch and Tretkoff over a number of years. In this book, Tretkoff has expanded those notes even further, still stressing examples offered by finite covers of line arrangements. The book is largely self-contained and foundational material is introduced and explained as needed, but not treated in full detail. References to omitted material are provided for interested readers. Aimed at graduate students and researchers, this is an accessible account of a highly informative area of complex geometry.
Topics in Hyperplane Arrangements
Title | Topics in Hyperplane Arrangements PDF eBook |
Author | Marcelo Aguiar |
Publisher | American Mathematical Soc. |
Pages | 639 |
Release | 2017-11-22 |
Genre | Mathematics |
ISBN | 1470437112 |
This monograph studies the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. It provides a careful, organized and unified treatment of several recent developments in the field, and brings forth many new ideas and results. It has two parts, each divided into eight chapters, and five appendices with background material. Part I gives a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes and other geometric notions associated with arrangements. The Tits monoid plays a central role. Another important object is the category of lunes which generalizes the classical associative operad. Also discussed are the descent and lune identities, distance functions on chambers, and the combinatorics of the braid arrangement and related examples. Part II studies the structure and representation theory of the Tits algebra of an arrangement. It gives a detailed analysis of idempotents and Peirce decompositions, and connects them to the classical theory of Eulerian idempotents. It introduces the space of Lie elements of an arrangement which generalizes the classical Lie operad. This space is the last nonzero power of the radical of the Tits algebra. It is also the socle of the left ideal of chambers and of the right ideal of Zie elements. Zie elements generalize the classical Lie idempotents. They include Dynkin elements associated to generic half-spaces which generalize the classical Dynkin idempotent. Another important object is the lune-incidence algebra which marks the beginning of noncommutative Möbius theory. These ideas are also brought upon the study of the Solomon descent algebra. The monograph is written with clarity and in sufficient detail to make it accessible to graduate students. It can also serve as a useful reference to experts.
The Geometry and Topology of Coxeter Groups
Title | The Geometry and Topology of Coxeter Groups PDF eBook |
Author | Michael Davis |
Publisher | Princeton University Press |
Pages | 601 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0691131384 |
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Combinatorial Algebraic Topology
Title | Combinatorial Algebraic Topology PDF eBook |
Author | Dimitry Kozlov |
Publisher | Springer Science & Business Media |
Pages | 416 |
Release | 2008-01-08 |
Genre | Mathematics |
ISBN | 9783540730514 |
This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.
The Geometry and Topology of Three-Manifolds
Title | The Geometry and Topology of Three-Manifolds PDF eBook |
Author | William P. Thurston |
Publisher | American Mathematical Society |
Pages | 337 |
Release | 2023-06-16 |
Genre | Mathematics |
ISBN | 1470474743 |
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.
Analytic Combinatorics in Several Variables
Title | Analytic Combinatorics in Several Variables PDF eBook |
Author | Robin Pemantle |
Publisher | Cambridge University Press |
Pages | 395 |
Release | 2013-05-31 |
Genre | Mathematics |
ISBN | 1107031575 |
Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.
Metric Spaces of Non-Positive Curvature
Title | Metric Spaces of Non-Positive Curvature PDF eBook |
Author | Martin R. Bridson |
Publisher | Springer Science & Business Media |
Pages | 665 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 3662124947 |
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.