Complex Analytic Methods for Partial Differential Equations
Title | Complex Analytic Methods for Partial Differential Equations PDF eBook |
Author | Heinrich G. W. Begehr |
Publisher | World Scientific |
Pages | 288 |
Release | 1994 |
Genre | Mathematics |
ISBN | 9789810215507 |
This is an introductory text for beginners who have a basic knowledge of complex analysis, functional analysis and partial differential equations. Riemann and Riemann-Hilbert boundary value problems are discussed for analytic functions, for inhomogeneous Cauchy-Riemann systems as well as for generalized Beltrami systems. Related problems such as the Poincar problem, pseudoparabolic systems and complex elliptic second order equations are also considered. Estimates for solutions to linear equations existence and uniqueness results are thus available for related nonlinear problems; the method is explained by constructing entire solutions to nonlinear Beltrami equations. Often problems are discussed just for the unit disc but more general domains, even of multiply connectivity, are involved.
Functional-analytic and Complex Methods, Their Interactions, and Applications to Partial Differential Equations
Title | Functional-analytic and Complex Methods, Their Interactions, and Applications to Partial Differential Equations PDF eBook |
Author | Helmut Florian |
Publisher | World Scientific |
Pages | 473 |
Release | 2001 |
Genre | Mathematics |
ISBN | 9812794557 |
Functional analysis is not only a tool for unifying mathematical analysis, but it also provides the background for today''s rapid development of the theory of partial differential equations. Using concepts of functional analysis, the field of complex analysis has developed methods (such as the theory of generalized analytic functions) for solving very general classes of partial differential equations. This book is aimed at promoting further interactions of functional analysis, partial differential equations, and complex analysis including its generalizations such as Clifford analysis. New interesting problems in the field of partial differential equations concern, for instance, the Dirichlet problem for hyperbolic equations. Applications to mathematical physics address mainly Maxwell''s equations, crystal optics, dynamical problems for cusped bars, and conservation laws. Sample Chapter(s). Hyperbolic Equations, Waves and the Singularity Theory (858 KB). Contents: Boundary Value Problems and Initial Value Problems for Partial Differential Equations; Applications of Functional-Analytic and Complex Methods to Mathematical Physics; Partial Complex Differential Equations in the Plane; Complex Methods in Higher Dimensions. Readership: Researchers, lecturers and graduate students in the fields of analysis & differential equations, applied mathematics and mathematical physics.
Complex Analytic Methods For Partial Differential Equations: An Introductory Text
Title | Complex Analytic Methods For Partial Differential Equations: An Introductory Text PDF eBook |
Author | Heinrich G W Begehr |
Publisher | World Scientific Publishing Company |
Pages | 286 |
Release | 1994-11-15 |
Genre | Mathematics |
ISBN | 9813104686 |
This is an introductory text for beginners who have a basic knowledge of complex analysis, functional analysis and partial differential equations. Riemann and Riemann-Hilbert boundary value problems are discussed for analytic functions, for inhomogeneous Cauchy-Riemann systems as well as for generalized Beltrami systems. Related problems such as the Poincaré problem, pseudoparabolic systems and complex elliptic second order equations are also considered. Estimates for solutions to linear equations existence and uniqueness results are thus available for related nonlinear problems; the method is explained by constructing entire solutions to nonlinear Beltrami equations. Often problems are discussed just for the unit disc but more general domains, even of multiply connectivity, are involved.
Functional Analytic Methods for Partial Differential Equations
Title | Functional Analytic Methods for Partial Differential Equations PDF eBook |
Author | Hiroki Tanabe |
Publisher | CRC Press |
Pages | 436 |
Release | 1996-09-04 |
Genre | Mathematics |
ISBN | 9780824797744 |
Combining both classical and current methods of analysis, this text present discussions on the application of functional analytic methods in partial differential equations. It furnishes a simplified, self-contained proof of Agmon-Douglis-Niremberg's Lp-estimates for boundary value problems, using the theory of singular integrals and the Hilbert transform.
Applied Complex Analysis with Partial Differential Equations
Title | Applied Complex Analysis with Partial Differential Equations PDF eBook |
Author | Nakhlé H. Asmar |
Publisher | |
Pages | 904 |
Release | 2002 |
Genre | Mathematics |
ISBN |
This reader-friendly book presents traditional material using a modern approach that invites the use of technology. Abundant exercises, examples, and graphics make it a comprehensive and visually appealing resource. Chapter topics include complex numbers and functions, analytic functions, complex integration, complex series, residues: applications and theory, conformal mapping, partial differential equations: methods and applications, transform methods, and partial differential equations in polar and spherical coordinates. For engineers and physicists in need of a quick reference tool.
Functional Analysis, Sobolev Spaces and Partial Differential Equations
Title | Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF eBook |
Author | Haim Brezis |
Publisher | Springer Science & Business Media |
Pages | 600 |
Release | 2010-11-02 |
Genre | Mathematics |
ISBN | 0387709142 |
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
An Introduction to Partial Differential Equations
Title | An Introduction to Partial Differential Equations PDF eBook |
Author | Michael Renardy |
Publisher | Springer Science & Business Media |
Pages | 447 |
Release | 2006-04-18 |
Genre | Mathematics |
ISBN | 0387216871 |
Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.