Combinatorial Algebraic Topology
Title | Combinatorial Algebraic Topology PDF eBook |
Author | Dimitry Kozlov |
Publisher | Springer Science & Business Media |
Pages | 416 |
Release | 2008-01-08 |
Genre | Mathematics |
ISBN | 9783540730514 |
This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.
Combinatorial Methods in Topology and Algebraic Geometry
Title | Combinatorial Methods in Topology and Algebraic Geometry PDF eBook |
Author | John R. Harper |
Publisher | American Mathematical Soc. |
Pages | 372 |
Release | 1985 |
Genre | Mathematics |
ISBN | 9780821850398 |
A survey of the areas where combinatorial methods have proven especially fruitful: topology and combinatorial group theory, knot theory, 3-manifolds, homotopy theory and infinite dimensional topology, and four manifolds and algebraic surfaces.
Combinatorial Methods
Title | Combinatorial Methods PDF eBook |
Author | Alexander Mikhalev |
Publisher | Springer Science & Business Media |
Pages | 336 |
Release | 2004 |
Genre | Mathematics |
ISBN | 9780387405629 |
The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).
Intuitive Combinatorial Topology
Title | Intuitive Combinatorial Topology PDF eBook |
Author | V.G. Boltyanskii |
Publisher | Springer Science & Business Media |
Pages | 160 |
Release | 2001-03-30 |
Genre | Mathematics |
ISBN | 9780387951140 |
Topology is a relatively young and very important branch of mathematics, which studies the properties of objects that are preserved through deformations, twistings, and stretchings. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. This book is well suited for readers who are interested in finding out what topology is all about.
Combinatorial methods in topology and algebraic geometry
Title | Combinatorial methods in topology and algebraic geometry PDF eBook |
Author | |
Publisher | American Mathematical Soc. |
Pages | 350 |
Release | 1985 |
Genre | Combinatorial analysis |
ISBN | 9780821853955 |
A Combinatorial Introduction to Topology
Title | A Combinatorial Introduction to Topology PDF eBook |
Author | Michael Henle |
Publisher | Courier Corporation |
Pages | 340 |
Release | 1994-01-01 |
Genre | Mathematics |
ISBN | 9780486679662 |
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
Using the Borsuk-Ulam Theorem
Title | Using the Borsuk-Ulam Theorem PDF eBook |
Author | Jiri Matousek |
Publisher | Springer Science & Business Media |
Pages | 221 |
Release | 2008-01-12 |
Genre | Mathematics |
ISBN | 3540766499 |
To the uninitiated, algebraic topology might seem fiendishly complex, but its utility is beyond doubt. This brilliant exposition goes back to basics to explain how the subject has been used to further our understanding in some key areas. A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. This book is the first textbook treatment of a significant part of these results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level. No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained.