Classification of Higher Dimensional Algebraic Varieties
Title | Classification of Higher Dimensional Algebraic Varieties PDF eBook |
Author | Christopher D. Hacon |
Publisher | Springer Science & Business Media |
Pages | 206 |
Release | 2011-02-02 |
Genre | Mathematics |
ISBN | 3034602901 |
Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.
Classification Theory of Algebraic Varieties and Compact Complex Spaces
Title | Classification Theory of Algebraic Varieties and Compact Complex Spaces PDF eBook |
Author | K. Ueno |
Publisher | Springer |
Pages | 296 |
Release | 2006-11-15 |
Genre | Computers |
ISBN | 3540374159 |
Classification of Algebraic Varieties
Title | Classification of Algebraic Varieties PDF eBook |
Author | Ciro Ciliberto |
Publisher | American Mathematical Soc. |
Pages | 434 |
Release | 1994 |
Genre | Mathematics |
ISBN | 0821851799 |
This volume contains the proceedings of the Algebraic Geometry Conference on Classification of Algebraic Varieties, held in May 1992 at the University of L'Aquila in Italy. The papers discuss a wide variety of problems that illustrate interactions between algebraic geometry and other branches of mathematics. Among the topics covered are algebraic curve theory, algebraic surface theory, the theory of minimal models, braid groups and the topology of algebraic varieties, toric varieties. In addition to algebraic geometers, theoretical physicists in some areas will find this book useful. The book is also suitable for an advanced graduate course in algebraic geometry, as it provides an overview of areas of current research.
Geometry of Higher Dimensional Algebraic Varieties
Title | Geometry of Higher Dimensional Algebraic Varieties PDF eBook |
Author | Thomas Peternell |
Publisher | Springer Science & Business Media |
Pages | 228 |
Release | 1997-03-20 |
Genre | Mathematics |
ISBN | 9783764354909 |
This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsin stitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T.
Birational Geometry of Algebraic Varieties
Title | Birational Geometry of Algebraic Varieties PDF eBook |
Author | Janos Kollár |
Publisher | Cambridge University Press |
Pages | 254 |
Release | 2010-03-24 |
Genre | Mathematics |
ISBN | 9780511662560 |
One of the major discoveries of the past two decades in algebraic geometry is the realization that the theory of minimal models of surfaces can be generalized to higher dimensional varieties. This generalization, called the minimal model program, or Mori's program, has developed into a powerful tool with applications to diverse questions in algebraic geometry and beyond. This book provides the first comprehensive introduction to the circle of ideas developed around the program, the prerequisites being only a basic knowledge of algebraic geometry. It will be of great interest to graduate students and researchers working in algebraic geometry and related fields.
Rational Points on Varieties
Title | Rational Points on Varieties PDF eBook |
Author | Bjorn Poonen |
Publisher | American Mathematical Soc. |
Pages | 358 |
Release | 2017-12-13 |
Genre | Mathematics |
ISBN | 1470437732 |
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
Complex Analysis and Algebraic Geometry
Title | Complex Analysis and Algebraic Geometry PDF eBook |
Author | Kunihiko Kodaira |
Publisher | CUP Archive |
Pages | 424 |
Release | 1977 |
Genre | Mathematics |
ISBN | 9780521217774 |
The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.