Chemomechanical Coupling and Motor Cycles of the Molecular Motor Myosin V

Chemomechanical Coupling and Motor Cycles of the Molecular Motor Myosin V
Title Chemomechanical Coupling and Motor Cycles of the Molecular Motor Myosin V PDF eBook
Author Veronika Bierbaum
Publisher
Pages 126
Release 2011
Genre
ISBN

Download Chemomechanical Coupling and Motor Cycles of the Molecular Motor Myosin V Book in PDF, Epub and Kindle

In the living cell, the organization of the complex internal structure relies to a large extent on molecular motors. Molecular motors are proteins that are able to convert chemical energy from the hydrolysis of adenosine triphosphate (ATP) into mechanical work. Being about 10 to 100 nanometers in size, the molecules act on a length scale, for which thermal collisions have a considerable impact onto their motion. In this way, they constitute paradigmatic examples of thermodynamic machines out of equilibrium. This study develops a theoretical description for the energy conversion by the molecular motor myosin V, using many different aspects of theoretical physics. Myosin V has been studied extensively in both bulk and single molecule experiments. Its stepping velocity has been characterized as a function of external control parameters such as nucleotide concentration and applied forces. In addition, numerous kinetic rates involved in the enzymatic reaction of the molecule have been determined. For forces that exceed the stall force of the motor, myosin V exhibits a 'ratcheting' behaviour: For loads in the direction of forward stepping, the velocity depends on the concentration of ATP, while for backward loads there is no such influence. Based on the chemical states of the motor, we construct a general network theory that incorporates experimental observations about the stepping behaviour of myosin V. The motor's motion is captured through the network description supplemented by a Markov process to describe the motor dynamics. This approach has the advantage of directly addressing the chemical kinetics of the molecule, and treating the mechanical and chemical processes on equal grounds. We utilize constraints arising from nonequilibrium thermodynamics to determine motor parameters and demonstrate that the motor behaviour is governed by several chemomechanical motor cycles. In addition, we investigate the functional dependence of stepping rates on force by deducing the motor's response to external loads via an appropriate Fokker-Planck equation. For substall forces, the dominant pathway of the motor network is profoundly different from the one for superstall forces, which leads to a stepping behaviour that is in agreement with the experimental observations. The extension of our analysis to Markov processes with absorbing boundaries allows for the calculation of the motor's dwell time distributions. These reveal aspects of the coordination of the motor's heads and contain direct information about the backsteps of the motor. Our theory provides a unified description for the myosin V motor as studied in single motor experiments.

Multiscale Modeling in Biomechanics and Mechanobiology

Multiscale Modeling in Biomechanics and Mechanobiology
Title Multiscale Modeling in Biomechanics and Mechanobiology PDF eBook
Author Suvranu De
Publisher Springer
Pages 287
Release 2014-10-10
Genre Technology & Engineering
ISBN 1447165993

Download Multiscale Modeling in Biomechanics and Mechanobiology Book in PDF, Epub and Kindle

Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.

Energy Coupling and Molecular Motors

Energy Coupling and Molecular Motors
Title Energy Coupling and Molecular Motors PDF eBook
Author Fuyuhiko Tamanoi
Publisher Elsevier
Pages 508
Release 2003-12-18
Genre Science
ISBN 0080521517

Download Energy Coupling and Molecular Motors Book in PDF, Epub and Kindle

This volume examines a number of different molecular motors that utilize ATP. The molecular machines to be discussed include ATP synthase, myosin, kinesin, DNA helicases, DNA topoisomerases, chaperones and bacterial rotory motors. The discussion of these various molecular motors is rarely undertaken in one volume and will serve as a great resource for scientists studying structure and function of multiprotein complexes as well as those working on energy coupling mechanisms. The areas of research presented in this volume do not normally overlap, and yet they share common mechanisms. This volume examines a number of different molecular motors that utilize ATP. The molecular machines to be discussed include ATP synthase, myosin, kinesin, DNA helicases, DNA topoisomerases, chaperones and bacterial rotory motors. The discussion of these various molecular motors is rarely undertaken in one volume and will serve as a great resource for scientists studying structure and function of multiprotein complexes as well as those working on energy coupling mechanisms. The areas of research presented in this volume do not normally overlap, and yet they share common mechanisms.

Molecular Motors

Molecular Motors
Title Molecular Motors PDF eBook
Author Manfred Schliwa
Publisher John Wiley & Sons
Pages 604
Release 2006-03-06
Genre Science
ISBN 3527605657

Download Molecular Motors Book in PDF, Epub and Kindle

The latest knowledge on molecular motors is vital for the understanding of a wide range of biological and medical topics: cell motility, organelle movement, virus transport, developmental asymmetry, myopathies, and sensory defects are all related to the function or malfunction of these minute molecular machines. Since there is a vast amount of information on motor mechanisms and potential biomedical and nanobiotechnological applications, this handbook fulfills the need for a collection of current research results on the functionality, regulation, and interactions of cytoskeletal, DNA, and rotary motors. Here, leading experts present a concise insight, ranging from atomic structure, biochemistry, and biophysics to cell biology, developmental biology and pathology. Basic principles and applications make this book a valuable reference tool for researchers, professionals, and clinicians alike - all set to become a "classic" in the years to come.

Myosins

Myosins
Title Myosins PDF eBook
Author Lynne M. Coluccio
Publisher Springer Nature
Pages 457
Release 2020-05-25
Genre Science
ISBN 3030380629

Download Myosins Book in PDF, Epub and Kindle

This highly authoritative volume highlights the remarkable superfamily of molecular motors called myosins, which are involved in such diverse cellular functions as muscle contraction, intracellular transport, cell migration and cell division. In a timely compilation of chapters written by leading research groups that have made key discoveries in the field, the current understanding of the molecular mechanisms and biological functions of these intriguing proteins is explored.

Viral Molecular Machines

Viral Molecular Machines
Title Viral Molecular Machines PDF eBook
Author Michael G. Rossmann
Publisher Springer Science & Business Media
Pages 685
Release 2012-02-02
Genre Medical
ISBN 1461409802

Download Viral Molecular Machines Book in PDF, Epub and Kindle

This book will contain a series of solicited chapters that concern with the molecular machines required by viruses to perform various essential functions of virus life cycle. The first three chapters (Introduction, Molecular Machines and Virus Architecture) introduce the reader to the best known molecular machines and to the structure of viruses. The remainder of the book will examine in detail various stages of the viral life cycle. Beginning with the viral entry into a host cell, the book takes the reader through replication of the genome, synthesis and assembly of viral structural components, genome packaging and maturation into an infectious virion. Each chapter will describe the components of the respective machine in molecular or atomic detail, genetic and biochemical analyses, and mechanism. Topics are carefully selected so that the reader is exposed to systems where there is a substantial infusion of new knowledge in recent years, which greatly elevated the fundamental mechanistic understanding of the respective molecular machine. The authors will be encouraged to simplify the detailed knowledge to basic concepts, include provocative new ideas, as well as design colorful graphics, thus making the cutting-edge information accessible to broad audience.

A Branched Kinetic Pathway Facilitates the Processivity of Myosin V.

A Branched Kinetic Pathway Facilitates the Processivity of Myosin V.
Title A Branched Kinetic Pathway Facilitates the Processivity of Myosin V. PDF eBook
Author Chong Zhang
Publisher
Pages 190
Release 2009
Genre
ISBN

Download A Branched Kinetic Pathway Facilitates the Processivity of Myosin V. Book in PDF, Epub and Kindle

Myosin V is a double-headed molecular motor that moves processively along actin filaments. Its processivity requires coordination between its two heads to keep their ATPase cycles out of phase, preventing both heads from detaching actin simultaneously. However, the kinetic scheme that two-headed myosin V takes during its processive run has long been debated. To address this issue, we studied the processivity (velocity and run length) of myosin V at multiple substrate conditions under zero load. We found that increasing [ATP] decreased the run length of myosin V, and a high phosphate concentration in the solution decreased both velocity and run length, as well as marlcedly increased the ratio of backsteps. Theses results are well explained by a lunetic model (Baker et al., 2004) in which myosin V proceeds through a branched kinetic pathway.