Chemical Kinetic Modeling of Component Mixtures Relevant to Gasoline

Chemical Kinetic Modeling of Component Mixtures Relevant to Gasoline
Title Chemical Kinetic Modeling of Component Mixtures Relevant to Gasoline PDF eBook
Author
Publisher
Pages 8
Release 2008
Genre
ISBN

Download Chemical Kinetic Modeling of Component Mixtures Relevant to Gasoline Book in PDF, Epub and Kindle

Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the basis of computational results.

Chemical Kinetic Modeling of Jet Fuel Surrogates

Chemical Kinetic Modeling of Jet Fuel Surrogates
Title Chemical Kinetic Modeling of Jet Fuel Surrogates PDF eBook
Author Krithika Narayanaswamy
Publisher
Pages
Release 2013
Genre
ISBN

Download Chemical Kinetic Modeling of Jet Fuel Surrogates Book in PDF, Epub and Kindle

Jet fuels, like typical transportation fuels, are mixtures of several hundreds of compounds belonging to different hydrocarbon classes. Their composition varies from one source to another, and only average fuel properties are known at best. In order to understand the combustion characteristics of the real fuels, and to address the problem of combustion control, computational studies using a detailed kinetic model to represent the real fuel, serves as a highly useful tool. However, the complexity of the real fuels makes it infeasible to simulate their combustion characteristics directly, requiring a simplified fuel representation to circumvent this difficulty. Typically, the real fuels are modeled using a representative surrogate mixture, i.e. a well-defined mixture comprised of a few components chosen to mimic the desired physical and chemical properties of the real fuel under consideration. Surrogates have been proposed for transportation fuels, including aviation fuels, and several kinetic modeling attempts for the proposed surrogates have also been made. However, (i) the fundamental kinetics of individual fuels, which make up the surrogate mixtures is not understood well, (ii) their combustion behavior at low through high temperatures has not been comprehensively validated, and this directly impacts the (iii) reliability of the multi-component reaction mechanism for a surrogate made up of these individual components. The present work is aimed at addressing the afore-mentioned concerns. The objective of this work is to develop a single, reliable kinetic model that can describe the oxidation of a few representative fuels, which are important components of transportation fuel surrogates, and thereby capture the specificities of the simpler, but still multi-component surrogates. The reaction mechanism is intended to well-represent the individual components as well as a multi-component surrogate for jet fuel made up of these fuel components. Further, this reaction mechanism is desired to be applicable at low through high temperatures, and be compact enough that chemical kinetic analysis is feasible. First, a representative compound for each of the major hydrocarbon classes found in the real jet fuel is identified. A surrogate for jet fuels is chosen to be comprised of n-dodecane (to represent normal alkanes), methylcyclohexane (to represent cyclic alkanes), and m-xylene (to represent aromatics). A Component Library approach is invoked for the development of a single, consistent, and reliable chemical scheme to accurately model this multi-component surrogate mixture. The chemical model is assembled in stages, starting with a base model and adding to it sub-mechanisms for the individual components of the surrogate, namely m- xylene, n-dodecane, and methylcyclohexane. The chemical model is validated comprehensively every time the oxidation pathways of a new component are incorporated into it and the experimental data is well captured by the simulations. In addition to the jet fuel surrogate, with the number of fuels described in the proposed reaction mechanism, a surrogate for the alternative Fischer-Tropsch fuels is also considered. Surrogates are defined for jet fuels and Fischer-Tropsch fuels by matching target properties important for combustion applications between the surrogate and the real fuel. The simulations performed using the proposed reaction mechanism, with the surrogates defined as fuels, are compared against global targets, such as ignition delays, flow reactor profiles, and flame speed measurements for representative jet fuels and Fischer-Tropsch fuels. The computations show promising agreement with these experimental data sets. The proposed reaction mechanism is well-suited to be used in real flow simulations of jet fuels. The proposed reaction mechanism has the ability to describe the kinetics of n- heptane, iso-octane, substituted aromatics, n-dodecane, and methylcyclohexane, all of which are important components of transportation fuel surrogates. Considering the large number of hydrocarbons whose kinetics are well described by this reaction mechanism, there are avenues for this reaction mechanism to be used to model other transportation fuels, such as gasoline, diesel, and alternative fuels, in addition to the jet and Fischer-Tropsch fuels discussed in the present study.

Detailed Kinetic Modeling of Gasoline Surrogate Mixtures

Detailed Kinetic Modeling of Gasoline Surrogate Mixtures
Title Detailed Kinetic Modeling of Gasoline Surrogate Mixtures PDF eBook
Author
Publisher
Pages 8
Release 2009
Genre
ISBN

Download Detailed Kinetic Modeling of Gasoline Surrogate Mixtures Book in PDF, Epub and Kindle

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion
Title Modeling and Simulation of Turbulent Combustion PDF eBook
Author Santanu De
Publisher Springer
Pages 663
Release 2017-12-12
Genre Science
ISBN 9811074100

Download Modeling and Simulation of Turbulent Combustion Book in PDF, Epub and Kindle

This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Detailed Chemical Kinetic Modeling of Biofuels and Their Blends with Conventional Fuel Components

Detailed Chemical Kinetic Modeling of Biofuels and Their Blends with Conventional Fuel Components
Title Detailed Chemical Kinetic Modeling of Biofuels and Their Blends with Conventional Fuel Components PDF eBook
Author Rupali Tripathi
Publisher
Pages 0
Release 2020
Genre
ISBN 9783844073515

Download Detailed Chemical Kinetic Modeling of Biofuels and Their Blends with Conventional Fuel Components Book in PDF, Epub and Kindle

Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion

Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion
Title Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion PDF eBook
Author
Publisher Elsevier
Pages 1034
Release 2019-06-21
Genre Technology & Engineering
ISBN 0128195797

Download Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion Book in PDF, Epub and Kindle

Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45, gives an overview of the different steps involved in the development and application of detailed kinetic mechanisms, mainly relating to pyrolysis and combustion processes. The book is divided into two parts that cover the chemistry and kinetic models and then the numerical and statistical methods. It offers a comprehensive coverage of the theory and tools needed, along with the steps necessary for practical and industrial applications. Details thermochemical properties and "ab initio" calculations of elementary reaction rates Details kinetic mechanisms of pyrolysis and combustion processes Explains experimental data for improving reaction models and for kinetic mechanisms assessment Describes surrogate fuels and molecular reconstruction of hydrocarbon liquid mixtures Describes pollutant formation in combustion systems Solves and validates the kinetic mechanisms using numerical and statistical methods Outlines optimal design of industrial burners and optimization and dynamic control of pyrolysis furnaces Outlines large eddy simulation of turbulent reacting flows

Modeling of Chemical Reactions

Modeling of Chemical Reactions
Title Modeling of Chemical Reactions PDF eBook
Author R.W. Carr
Publisher Elsevier
Pages 317
Release 2007-09-04
Genre Science
ISBN 008054617X

Download Modeling of Chemical Reactions Book in PDF, Epub and Kindle

Modeling of Chemical Reactions covers detailed chemical kinetics models for chemical reactions. Including a comprehensive treatment of pressure dependent reactions, which are frequently not incorporated into detailed chemical kinetic models, and the use of modern computational quantum chemistry, which has recently become an extraordinarily useful component of the reaction kinetics toolkit. It is intended both for those who need to model complex chemical reaction processes but have little background in the area, and those who are already have experience and would benefit from having a wide range of useful material gathered in one volume. The range of subject matter is wider than that found in many previous treatments of this subject. The technical level of the material is also quite wide, so that non-experts can gain a grasp of fundamentals, and experts also can find the book useful. - A solid introduction to kinetics - Material on computational quantum chemistry, an important new area for kinetics - Contains a chapter on construction of mechanisms, an approach only found in this book