Cellular Biology of the Endoplasmic Reticulum
Title | Cellular Biology of the Endoplasmic Reticulum PDF eBook |
Author | Luis B. Agellon |
Publisher | Springer Nature |
Pages | 329 |
Release | 2021-05-29 |
Genre | Science |
ISBN | 303067696X |
This book provides a comprehensive overview of the biology of the endoplasmic reticulum (ER) and the associated ER proteins, it discusses their structure, function and signaling mechanisms in the cell and their role in disease. This book also offers insights into the practical aspects of research and demonstrates the use of non-mammalian models to study the structure and function of the ER. Written by leading experts in the field, the book enables readers to gain a thorough understanding of current ER biology. It is intended for scientists and clinical researchers working on the endoplasmic reticulum in all its various roles and facets in health and disease.
Molecular Biology of the Cell
Title | Molecular Biology of the Cell PDF eBook |
Author | |
Publisher | |
Pages | 0 |
Release | 2002 |
Genre | Cells |
ISBN | 9780815332183 |
Cell Biology by the Numbers
Title | Cell Biology by the Numbers PDF eBook |
Author | Ron Milo |
Publisher | Garland Science |
Pages | 399 |
Release | 2015-12-07 |
Genre | Science |
ISBN | 1317230698 |
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid
Cell Organelles
Title | Cell Organelles PDF eBook |
Author | Reinhold G. Herrmann |
Publisher | Springer Science & Business Media |
Pages | 473 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3709191386 |
The compartmentation of genetic information is a fundamental feature of the eukaryotic cell. The metabolic capacity of a eukaryotic (plant) cell and the steps leading to it are overwhelmingly an endeavour of a joint genetic cooperation between nucleus/cytosol, plastids, and mitochondria. Alter ation of the genetic material in anyone of these compartments or exchange of organelles between species can seriously affect harmoniously balanced growth of an organism. Although the biological significance of this genetic design has been vividly evident since the discovery of non-Mendelian inheritance by Baur and Correns at the beginning of this century, and became indisputable in principle after Renner's work on interspecific nuclear/plastid hybrids (summarized in his classical article in 1934), studies on the genetics of organelles have long suffered from the lack of respectabil ity. Non-Mendelian inheritance was considered a research sideline~ifnot a freak~by most geneticists, which becomes evident when one consults common textbooks. For instance, these have usually impeccable accounts of photosynthetic and respiratory energy conversion in chloroplasts and mitochondria, of metabolism and global circulation of the biological key elements C, N, and S, as well as of the organization, maintenance, and function of nuclear genetic information. In contrast, the heredity and molecular biology of organelles are generally treated as an adjunct, and neither goes as far as to describe the impact of the integrated genetic system.
Plant Cell Biology
Title | Plant Cell Biology PDF eBook |
Author | Randy O. Wayne |
Publisher | Academic Press |
Pages | 748 |
Release | 2018-11-13 |
Genre | Science |
ISBN | 012814372X |
Plant Cell Biology, Second Edition: From Astronomy to Zoology connects the fundamentals of plant anatomy, plant physiology, plant growth and development, plant taxonomy, plant biochemistry, plant molecular biology, and plant cell biology. It covers all aspects of plant cell biology without emphasizing any one plant, organelle, molecule, or technique. Although most examples are biased towards plants, basic similarities between all living eukaryotic cells (animal and plant) are recognized and used to best illustrate cell processes. This is a must-have reference for scientists with a background in plant anatomy, plant physiology, plant growth and development, plant taxonomy, and more. - Includes chapter on using mutants and genetic approaches to plant cell biology research and a chapter on -omic technologies - Explains the physiological underpinnings of biological processes to bring original insights relating to plants - Includes examples throughout from physics, chemistry, geology, and biology to bring understanding on plant cell development, growth, chemistry and diseases - Provides the essential tools for students to be able to evaluate and assess the mechanisms involved in cell growth, chromosome motion, membrane trafficking and energy exchange
The Biogenesis of Cellular Organelles
Title | The Biogenesis of Cellular Organelles PDF eBook |
Author | Chris Mullins |
Publisher | Springer Science & Business Media |
Pages | 191 |
Release | 2007-03-06 |
Genre | Medical |
ISBN | 0387268677 |
The Biogenesis of Cellular Organelles represents a comprehensive summary of recent advances in the study of the biogenesis and functional dynamics of the major organelles operating in the eukaryotic cell. This book begins by placing the study of organelle biogenesis in a historical perspective by describing past scientific strategies, theories, and findings and relating these foundations to current investigations. Reviews of protein and lipid mediators important for organelle biogenesis are then presented, and are followed by summaries focused on the endoplasmic reticulum, Golgi, lysosome, nucleus, mitochondria, and peroxisome.
Organelle Contact Sites
Title | Organelle Contact Sites PDF eBook |
Author | Mitsuo Tagaya |
Publisher | Springer |
Pages | 254 |
Release | 2017-08-16 |
Genre | Science |
ISBN | 9811045674 |
This book provides the first comprehensive coverage of the quickly evolving research field of membrane contact sites (MCS). A total of 16 chapters explain their organization and role and unveil the significance of MCS for various diseases. MCS, the intracellular structures where organellar membranes come in close contact with one another, mediate the exchange of proteins, lipids, and ions. Via these functions, MCS are critical for the survival and the growth of the cell. Owing to that central role in the functioning of cells, MCS dysfunctions lead to important defects of human physiology, influence viral and bacterial infection, and cause disease such as inflammation, type II diabetes, neurodegenerative disorders, and cancer. To approach such a multifaceted topic, this volume assembles a series of chapters dealing with the full array of research about MCS and their respective roles for diseases. Most chapters also introduce the history and the state of the art of MCS research, which will initiate discussion points for the respective types of MCS for years to come. This work will appeal to all cell biologists as well as researchers on diseases that are impacted by MCS dysfunction. Additionally, it will stimulate graduate students and postdocs who will energize, drive, and develop the research field in the near future.