Category Theory for Programmers (New Edition, Hardcover)

Category Theory for Programmers (New Edition, Hardcover)
Title Category Theory for Programmers (New Edition, Hardcover) PDF eBook
Author Bartosz Milewski
Publisher
Pages
Release 2019-08-24
Genre
ISBN 9780464243878

Download Category Theory for Programmers (New Edition, Hardcover) Book in PDF, Epub and Kindle

Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might, therefore, come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well-structured programs are easier to understand and maintain and are less likely to contain bugs. Category theory provides the language to talk about structure and learning it will make you a better programmer.

Category Theory for Programmers (Scala Edition, Paperback)

Category Theory for Programmers (Scala Edition, Paperback)
Title Category Theory for Programmers (Scala Edition, Paperback) PDF eBook
Author Bartosz Milewski
Publisher
Pages
Release 2019-08-12
Genre
ISBN 9780464183648

Download Category Theory for Programmers (Scala Edition, Paperback) Book in PDF, Epub and Kindle

This is the Scala edition of Category Theory for Programmers by Bartosz Milewski. This book contains code snippets in both Haskell and Scala.

Category Theory for Programmers

Category Theory for Programmers
Title Category Theory for Programmers PDF eBook
Author Bartosz Milewski
Publisher
Pages
Release 2018-10-21
Genre
ISBN 9781518403507

Download Category Theory for Programmers Book in PDF, Epub and Kindle

Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might therefore come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well structured programs are easier to understand and maintain, and are less likely to contain bugs. Category theory provides the language to talk about structure, and learning it will make you a better programmer.

Basic Category Theory for Computer Scientists

Basic Category Theory for Computer Scientists
Title Basic Category Theory for Computer Scientists PDF eBook
Author Benjamin C. Pierce
Publisher MIT Press
Pages 117
Release 1991-08-07
Genre Computers
ISBN 0262326450

Download Basic Category Theory for Computer Scientists Book in PDF, Epub and Kindle

Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading

An Invitation to Applied Category Theory

An Invitation to Applied Category Theory
Title An Invitation to Applied Category Theory PDF eBook
Author Brendan Fong
Publisher Cambridge University Press
Pages 351
Release 2019-07-18
Genre Mathematics
ISBN 1108582249

Download An Invitation to Applied Category Theory Book in PDF, Epub and Kindle

Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.

Categories for the Working Mathematician

Categories for the Working Mathematician
Title Categories for the Working Mathematician PDF eBook
Author Saunders Mac Lane
Publisher Springer Science & Business Media
Pages 320
Release 2013-04-17
Genre Mathematics
ISBN 1475747217

Download Categories for the Working Mathematician Book in PDF, Epub and Kindle

An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.

Category Theory in Context

Category Theory in Context
Title Category Theory in Context PDF eBook
Author Emily Riehl
Publisher Courier Dover Publications
Pages 273
Release 2017-03-09
Genre Mathematics
ISBN 0486820807

Download Category Theory in Context Book in PDF, Epub and Kindle

Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.