Calculus of Variations
Title | Calculus of Variations PDF eBook |
Author | Filip Rindler |
Publisher | Springer |
Pages | 446 |
Release | 2018-06-20 |
Genre | Mathematics |
ISBN | 3319776371 |
This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field. Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored. While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev spaces, and measure theory, though most of the preliminaries are also recalled in the appendix.
Modern Methods in the Calculus of Variations
Title | Modern Methods in the Calculus of Variations PDF eBook |
Author | Irene Fonseca |
Publisher | Springer Science & Business Media |
Pages | 602 |
Release | 2007-08-22 |
Genre | Science |
ISBN | 0387690069 |
This is the first of two books on methods and techniques in the calculus of variations. Contemporary arguments are used throughout the text to streamline and present in a unified way classical results, and to provide novel contributions at the forefront of the theory. This book addresses fundamental questions related to lower semicontinuity and relaxation of functionals within the unconstrained setting, mainly in L^p spaces. It prepares the ground for the second volume where the variational treatment of functionals involving fields and their derivatives will be undertaken within the framework of Sobolev spaces. This book is self-contained. All the statements are fully justified and proved, with the exception of basic results in measure theory, which may be found in any good textbook on the subject. It also contains several exercises. Therefore,it may be used both as a graduate textbook as well as a reference text for researchers in the field. Irene Fonseca is the Mellon College of Science Professor of Mathematics and is currently the Director of the Center for Nonlinear Analysis in the Department of Mathematical Sciences at Carnegie Mellon University. Her research interests lie in the areas of continuum mechanics, calculus of variations, geometric measure theory and partial differential equations. Giovanni Leoni is also a professor in the Department of Mathematical Sciences at Carnegie Mellon University. He focuses his research on calculus of variations, partial differential equations and geometric measure theory with special emphasis on applications to problems in continuum mechanics and in materials science.
Introduction to the Calculus of Variations and Control with Modern Applications
Title | Introduction to the Calculus of Variations and Control with Modern Applications PDF eBook |
Author | John A. Burns |
Publisher | CRC Press |
Pages | 562 |
Release | 2013-08-28 |
Genre | Mathematics |
ISBN | 1466571403 |
Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions a
Calculus of Variations
Title | Calculus of Variations PDF eBook |
Author | Charles R. MacCluer |
Publisher | Courier Corporation |
Pages | 274 |
Release | 2013-05-20 |
Genre | Mathematics |
ISBN | 0486278301 |
First truly up-to-date treatment offers a simple introduction to optimal control, linear-quadratic control design, and more. Broad perspective features numerous exercises, hints, outlines, and appendixes, including a practical discussion of MATLAB. 2005 edition.
Calculus of Variations with Applications
Title | Calculus of Variations with Applications PDF eBook |
Author | George McNaught Ewing |
Publisher | Courier Corporation |
Pages | 355 |
Release | 1985-01-01 |
Genre | Mathematics |
ISBN | 0486648567 |
Applications-oriented introduction to variational theory develops insight and promotes understanding of specialized books and research papers. Suitable for advanced undergraduate and graduate students as a primary or supplementary text. 1969 edition.
Calculus of Variations
Title | Calculus of Variations PDF eBook |
Author | I. M. Gelfand |
Publisher | Courier Corporation |
Pages | 260 |
Release | 2012-04-26 |
Genre | Mathematics |
ISBN | 0486135012 |
Fresh, lively text serves as a modern introduction to the subject, with applications to the mechanics of systems with a finite number of degrees of freedom. Ideal for math and physics students.
The Calculus of Variations
Title | The Calculus of Variations PDF eBook |
Author | Bruce van Brunt |
Publisher | Springer Science & Business Media |
Pages | 295 |
Release | 2006-04-18 |
Genre | Mathematics |
ISBN | 0387216979 |
Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material.