Bruhat–Tits Theory
Title | Bruhat–Tits Theory PDF eBook |
Author | Tasho Kaletha |
Publisher | Cambridge University Press |
Pages | 750 |
Release | 2022-12-31 |
Genre | Mathematics |
ISBN | 1108935028 |
Bruhat-Tits theory that suffices for the main applications. Part III treats modern topics that have become important in current research. Part IV provides a few sample applications of the theory. The appendices contain further details on the topic of integral models.
A Compactification of the Bruhat-Tits Building
Title | A Compactification of the Bruhat-Tits Building PDF eBook |
Author | Erasmus Landvogt |
Publisher | Springer |
Pages | 159 |
Release | 2006-11-14 |
Genre | Mathematics |
ISBN | 3540455566 |
The aim of this work is the definition of the polyhedral compactification of the Bruhat-Tits building of a reductive group over a local field. In addition, an explicit description of the boundary is given. In order to make this work as self-contained as possible and also accessible to non-experts in Bruhat-Tits theory, the construction of the Bruhat-Tits building itself is given completely.
Spectral Theory and Analytic Geometry over Non-Archimedean Fields
Title | Spectral Theory and Analytic Geometry over Non-Archimedean Fields PDF eBook |
Author | Vladimir G. Berkovich |
Publisher | American Mathematical Soc. |
Pages | 181 |
Release | 2012-08-02 |
Genre | Mathematics |
ISBN | 0821890204 |
The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and -adic analysis.
Descent in Buildings
Title | Descent in Buildings PDF eBook |
Author | Bernhard Mühlherr |
Publisher | Princeton University Press |
Pages | 352 |
Release | 2015-09-22 |
Genre | Mathematics |
ISBN | 0691166919 |
Descent in Buildings begins with the resolution of a major open question about the local structure of Bruhat-Tits buildings. The authors then put their algebraic solution into a geometric context by developing a general fixed point theory for groups acting on buildings of arbitrary type, giving necessary and sufficient conditions for the residues fixed by a group to form a kind of subbuilding or "form" of the original building. At the center of this theory is the notion of a Tits index, a combinatorial version of the notion of an index in the relative theory of algebraic groups. These results are combined at the end to show that every exceptional Bruhat-Tits building arises as a form of a "residually pseudo-split" Bruhat-Tits building. The book concludes with a display of the Tits indices associated with each of these exceptional forms. This is the third and final volume of a trilogy that began with Richard Weiss' The Structure of Spherical Buildings and The Structure of Affine Buildings.
The Structure of Affine Buildings. (AM-168)
Title | The Structure of Affine Buildings. (AM-168) PDF eBook |
Author | Richard Mark Weiss |
Publisher | Princeton University Press |
Pages | 388 |
Release | 2009 |
Genre | Architecture |
ISBN | 9780691138817 |
Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions and residues of these buildings.
Buildings of Spherical Type and Finite BN-Pairs
Title | Buildings of Spherical Type and Finite BN-Pairs PDF eBook |
Author | J. Tits |
Publisher | Springer |
Pages | 313 |
Release | 2009-02-05 |
Genre | Mathematics |
ISBN | 3540383492 |
These notes are a slightly revised and extended version of mim- graphed notes written on the occasion of a seminar on buildings and BN-pairs held at Oberwolfach in April 1968. Their main purpose is to present the solution of the following two problems: (A) Determination of the buildings of rank >; and irreducible, spherical type, other than ~ and H ("of spherical type" means "with finite Weyl 4 group", about the excluded types H, cf. the addenda on p. 274). Roughly speaking, those buildings all turn out to be associated to simple algebraic or classical groups (cf. 6. ;, 6. 1;, 8. 4. ;, 8. 22, 9. 1, 10. 2). An easy application provides the enumeration of all finite groups with BN-pairs of irreducible type and rank >;, up to normal subgroups contained in B (cf. 11. 7). (B) Determination of all isomorphisms between buildings of rank > 2 and spherical type associated to algebraic or classical simple groups and, in parti cular, description of the full automorphism groups of such buildings (cf. 5. 8, 5. 9, 5. 10, 6. 6, 6. 1;, 8. 6, 9. ;, 10. 4). Except for the appendices, the notes are rather strictly oriented - ward these goals.
Berkovich Spaces and Applications
Title | Berkovich Spaces and Applications PDF eBook |
Author | Antoine Ducros |
Publisher | Springer |
Pages | 432 |
Release | 2014-11-21 |
Genre | Mathematics |
ISBN | 3319110292 |
We present an introduction to Berkovich’s theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analytic spaces by M. Temkin, and to étale cohomology by A. Ducros, as well as a short note by C. Favre on the topology of some Berkovich spaces. The second part focuses on applications to geometry. A second text by A. Ducros contains a new proof of the fact that the higher direct images of a coherent sheaf under a proper map are coherent, and B. Rémy, A. Thuillier and A. Werner provide an overview of their work on the compactification of Bruhat-Tits buildings using Berkovich analytic geometry. The third and final part explores the relationship between non-archimedean geometry and dynamics. A contribution by M. Jonsson contains a thorough discussion of non-archimedean dynamical systems in dimension 1 and 2. Finally a survey by J.-P. Otal gives an account of Morgan-Shalen's theory of compactification of character varieties. This book will provide the reader with enough material on the basic concepts and constructions related to Berkovich spaces to move on to more advanced research articles on the subject. We also hope that the applications presented here will inspire the reader to discover new settings where these beautiful and intricate objects might arise.