The Brauer–Grothendieck Group
Title | The Brauer–Grothendieck Group PDF eBook |
Author | Jean-Louis Colliot-Thélène |
Publisher | Springer Nature |
Pages | 450 |
Release | 2021-07-30 |
Genre | Mathematics |
ISBN | 3030742482 |
This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer–Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong’s proof of Gabber’s theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer–Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer–Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.
Richard Brauer - Collected Papers
Title | Richard Brauer - Collected Papers PDF eBook |
Author | Richard Brauer |
Publisher | MIT Press (MA) |
Pages | 586 |
Release | 2003-02-01 |
Genre | Mathematics |
ISBN | 9780262523837 |
Richard Brauer (1901-1977) was one of the leading algebraists of this century. Although he contributed to a number of mathematical fields, Brauer devoted the major share of his efforts to the study of finite groups, a subject of considerable abstract interest and one that underlies many of the more recent advances in combinatorics and finite geometries.
Brauer Groups and Obstruction Problems
Title | Brauer Groups and Obstruction Problems PDF eBook |
Author | Asher Auel |
Publisher | Birkhäuser |
Pages | 251 |
Release | 2017-03-02 |
Genre | Mathematics |
ISBN | 3319468529 |
The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou
Brauer Groups, Hopf Algebras and Galois Theory
Title | Brauer Groups, Hopf Algebras and Galois Theory PDF eBook |
Author | Stefaan Caenepeel |
Publisher | Springer Science & Business Media |
Pages | 516 |
Release | 2002-03-31 |
Genre | Mathematics |
ISBN | 9781402003462 |
This volume is devoted to the Brauer group of a commutative ring and related invariants. Part I presents a new self-contained exposition of the Brauer group of a commutative ring. Included is a systematic development of the theory of Grothendieck topologies and étale cohomology, and discussion of topics such as Gabber's theorem and the theory of Taylor's big Brauer group of algebras without a unit. Part II presents a systematic development of the Galois theory of Hopf algebras with special emphasis on the group of Galois objects of a cocommutative Hopf algebra. The development of the theory is carried out in such a way that the connection to the theory of the Brauer group in Part I is made clear. Recent developments are considered and examples are included. The Brauer-Long group of a Hopf algebra over a commutative ring is discussed in Part III. This provides a link between the first two parts of the volume and is the first time this topic has been discussed in a monograph. Audience: Researchers whose work involves group theory. The first two parts, in particular, can be recommended for supplementary, graduate course use.
Rings, Hopf Algebras, and Brauer Groups
Title | Rings, Hopf Algebras, and Brauer Groups PDF eBook |
Author | Stefaan Caenepeel |
Publisher | CRC Press |
Pages | 352 |
Release | 2020-09-29 |
Genre | Mathematics |
ISBN | 1000153282 |
"Based on papers presented at a recent international conference on algebra and algebraic geometry held jointly in Antwerp and Brussels, Belgium. Presents both survey and research articles featuring new results from the intersection of algebra and geometry. "
Brauer Groups and the Cohomology of Graded Rings
Title | Brauer Groups and the Cohomology of Graded Rings PDF eBook |
Author | Stefaan Caenepeel |
Publisher | CRC Press |
Pages | 283 |
Release | 2020-08-27 |
Genre | Mathematics |
ISBN | 1000147215 |
This book introduces various notions defined in graded terms extending the notions most frequently used as basic ingredients in the theory of Azumaya algebras: separability and Galois extensions of commutative rings, crossed products and Galois cohomology, Picard groups, and the Brauer group.
Central Simple Algebras and Galois Cohomology
Title | Central Simple Algebras and Galois Cohomology PDF eBook |
Author | Philippe Gille |
Publisher | Cambridge University Press |
Pages | 431 |
Release | 2017-08-10 |
Genre | Mathematics |
ISBN | 1107156378 |
The first comprehensive modern introduction to central simple algebra starting from the basics and reaching advanced results.