Bounded Cohomology of Discrete Groups
Title | Bounded Cohomology of Discrete Groups PDF eBook |
Author | Roberto Frigerio |
Publisher | American Mathematical Soc. |
Pages | 213 |
Release | 2017-11-21 |
Genre | Mathematics |
ISBN | 1470441462 |
The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate students, and as a valuable landmark text for researchers, providing both the details of the theory of bounded cohomology and links of the theory to other closely related areas. The first part of the book is devoted to settling the fundamental definitions of the theory, and to proving some of the (by now classical) results on low-dimensional bounded cohomology and on bounded cohomology of topological spaces. The second part describes applications of the theory to the study of the simplicial volume of manifolds, to the classification of circle actions, to the analysis of maximal representations of surface groups, and to the study of flat vector bundles with a particular emphasis on the possible use of bounded cohomology in relation with the Chern conjecture. Each chapter ends with a discussion of further reading that puts the presented results in a broader context.
Bounded Cohomology and Simplicial Volume
Title | Bounded Cohomology and Simplicial Volume PDF eBook |
Author | Caterina Campagnolo |
Publisher | Cambridge University Press |
Pages | 172 |
Release | 2022-11-17 |
Genre | Mathematics |
ISBN | 100919271X |
Since their introduction by Gromov in the 1980s, the study of bounded cohomology and simplicial volume has developed into an active field connected to geometry and group theory. This monograph, arising from a learning seminar for young researchers working in the area, provides a collection of different perspectives on the subject, both classical and recent. The book's introduction presents the main definitions of the theories of bounded cohomology and simplicial volume, outlines their history, and explains their principal motivations and applications. Individual chapters then present different aspects of the theory, with a focus on examples. Detailed references to foundational papers and the latest research are given for readers wishing to dig deeper. The prerequisites are only basic knowledge of classical algebraic topology and of group theory, and the presentations are gentle and informal in order to be accessible to beginning graduate students wanting to enter this lively and topical field.
Gromov’s Theory of Multicomplexes with Applications to Bounded Cohomology and Simplicial Volume
Title | Gromov’s Theory of Multicomplexes with Applications to Bounded Cohomology and Simplicial Volume PDF eBook |
Author | Roberto Frigerio |
Publisher | American Mathematical Society |
Pages | 166 |
Release | 2023-03-09 |
Genre | Mathematics |
ISBN | 1470459914 |
View the abstract.
Normed Amenability and Bounded Cohomology over Non-Archimedean Fields
Title | Normed Amenability and Bounded Cohomology over Non-Archimedean Fields PDF eBook |
Author | Francesco Fournier-Facio |
Publisher | American Mathematical Society |
Pages | 116 |
Release | 2024-08-19 |
Genre | Mathematics |
ISBN | 1470470918 |
View the abstract.
L2-Invariants: Theory and Applications to Geometry and K-Theory
Title | L2-Invariants: Theory and Applications to Geometry and K-Theory PDF eBook |
Author | Wolfgang Lück |
Publisher | Springer Science & Business Media |
Pages | 604 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 3662046873 |
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.
On the Algebraic Foundations of Bounded Cohomology
Title | On the Algebraic Foundations of Bounded Cohomology PDF eBook |
Author | Theo Bühler |
Publisher | American Mathematical Soc. |
Pages | 126 |
Release | 2011 |
Genre | Mathematics |
ISBN | 0821853112 |
It is a widespread opinion among experts that (continuous) bounded cohomology cannot be interpreted as a derived functor and that triangulated methods break down. The author proves that this is wrong. He uses the formalism of exact categories and their derived categories in order to construct a classical derived functor on the category of Banach $G$-modules with values in Waelbroeck's abelian category. This gives us an axiomatic characterization of this theory for free, and it is a simple matter to reconstruct the classical semi-normed cohomology spaces out of Waelbroeck's category. The author proves that the derived categories of right bounded and of left bounded complexes of Banach $G$-modules are equivalent to the derived category of two abelian categories (one for each boundedness condition), a consequence of the theory of abstract truncation and hearts of $t$-structures. Moreover, he proves that the derived categories of Banach $G$-modules can be constructed as the homotopy categories of model structures on the categories of chain complexes of Banach $G$-modules, thus proving that the theory fits into yet another standard framework of homological and homotopical algebra.
Lecture Notes on Motivic Cohomology
Title | Lecture Notes on Motivic Cohomology PDF eBook |
Author | Carlo Mazza |
Publisher | American Mathematical Soc. |
Pages | 240 |
Release | 2006 |
Genre | Mathematics |
ISBN | 9780821838471 |
The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).