Boundary Value Problems, Weyl Functions, and Differential Operators
Title | Boundary Value Problems, Weyl Functions, and Differential Operators PDF eBook |
Author | Jussi Behrndt |
Publisher | Springer Nature |
Pages | 775 |
Release | 2020-01-03 |
Genre | Mathematics |
ISBN | 3030367142 |
This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schrödinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.
Non-Homogeneous Boundary Value Problems and Applications
Title | Non-Homogeneous Boundary Value Problems and Applications PDF eBook |
Author | Jacques Louis Lions |
Publisher | Springer Science & Business Media |
Pages | 375 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642651615 |
1. We describe, at first in a very formaI manner, our essential aim. n Let m be an op en subset of R , with boundary am. In m and on am we introduce, respectively, linear differential operators P and Qj' 0 ~ i ~ 'V. By "non-homogeneous boundary value problem" we mean a problem of the following type: let f and gj' 0 ~ i ~ 'v, be given in function space s F and G , F being a space" on m" and the G/ s spaces" on am" ; j we seek u in a function space u/t "on m" satisfying (1) Pu = f in m, (2) Qju = gj on am, 0 ~ i ~ 'v«])). Qj may be identically zero on part of am, so that the number of boundary conditions may depend on the part of am considered 2. We take as "working hypothesis" that, for fEF and gjEG , j the problem (1), (2) admits a unique solution u E U/t, which depends 3 continuously on the data . But for alllinear probIems, there is a large number of choiees for the space s u/t and {F; G} (naturally linke d together). j Generally speaking, our aim is to determine families of spaces 'ft and {F; G}, associated in a "natural" way with problem (1), (2) and con j venient for applications, and also all possible choiees for u/t and {F; G} j in these families.
Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
Title | Numerical Solution of Boundary Value Problems for Ordinary Differential Equations PDF eBook |
Author | Uri M. Ascher |
Publisher | SIAM |
Pages | 620 |
Release | 1994-12-01 |
Genre | Mathematics |
ISBN | 9781611971231 |
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Boundary Value Problems for Systems of Differential, Difference and Fractional Equations
Title | Boundary Value Problems for Systems of Differential, Difference and Fractional Equations PDF eBook |
Author | Johnny Henderson |
Publisher | Academic Press |
Pages | 323 |
Release | 2015-10-30 |
Genre | Mathematics |
ISBN | 0128036796 |
Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions discusses the concept of a differential equation that brings together a set of additional constraints called the boundary conditions. As boundary value problems arise in several branches of math given the fact that any physical differential equation will have them, this book will provide a timely presentation on the topic. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed. - Explains the systems of second order and higher orders differential equations with integral and multi-point boundary conditions - Discusses second order difference equations with multi-point boundary conditions - Introduces Riemann-Liouville fractional differential equations with uncoupled and coupled integral boundary conditions
Two-Point Boundary Value Problems: Lower and Upper Solutions
Title | Two-Point Boundary Value Problems: Lower and Upper Solutions PDF eBook |
Author | C. De Coster |
Publisher | Elsevier |
Pages | 502 |
Release | 2006-03-21 |
Genre | Mathematics |
ISBN | 0080462472 |
This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes
Elementary Differential Equations with Boundary Value Problems
Title | Elementary Differential Equations with Boundary Value Problems PDF eBook |
Author | William F. Trench |
Publisher | Thomson Brooks/Cole |
Pages | 764 |
Release | 2001 |
Genre | Mathematics |
ISBN |
Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.
Initial-boundary Value Problems and the Navier-Stokes Equations
Title | Initial-boundary Value Problems and the Navier-Stokes Equations PDF eBook |
Author | Heinz-Otto Kreiss |
Publisher | SIAM |
Pages | 408 |
Release | 1989-01-01 |
Genre | Science |
ISBN | 0898719135 |
Annotation This book provides an introduction to the vast subject of initial and initial-boundary value problems for PDEs, with an emphasis on applications to parabolic and hyperbolic systems. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. Researchers and graduate students in applied mathematics and engineering will find Initial-Boundary Value Problems and the Navier-Stokes Equations invaluable. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. There are many new results, in particular on the Navier-Stokes equations. The direct approach to the subject still gives a valuable introduction to an important area of applied analysis.