Bodies of Constant Width
Title | Bodies of Constant Width PDF eBook |
Author | Horst Martini |
Publisher | Springer |
Pages | 486 |
Release | 2019-03-16 |
Genre | Mathematics |
ISBN | 3030038688 |
This is the first comprehensive monograph to thoroughly investigate constant width bodies, which is a classic area of interest within convex geometry. It examines bodies of constant width from several points of view, and, in doing so, shows surprising connections between various areas of mathematics. Concise explanations and detailed proofs demonstrate the many interesting properties and applications of these bodies. Numerous instructive diagrams are provided throughout to illustrate these concepts. An introduction to convexity theory is first provided, and the basic properties of constant width bodies are then presented. The book then delves into a number of related topics, which include Constant width bodies in convexity (sections and projections, complete and reduced sets, mixed volumes, and further partial fields) Sets of constant width in non-Euclidean geometries (in real Banach spaces, and in hyperbolic, spherical, and further non-Euclidean spaces) The concept of constant width in analysis (using Fourier series, spherical integration, and other related methods) Sets of constant width in differential geometry (using systems of lines and discussing notions like curvature, evolutes, etc.) Bodies of constant width in topology (hyperspaces, transnormal manifolds, fiber bundles, and related topics) The notion of constant width in discrete geometry (referring to geometric inequalities, packings and coverings, etc.) Technical applications, such as film projectors, the square-hole drill, and rotary engines Bodies of Constant Width: An Introduction to Convex Geometry with Applications will be a valuable resource for graduate and advanced undergraduate students studying convex geometry and related fields. Additionally, it will appeal to any mathematicians with a general interest in geometry.
Convexity and Its Applications
Title | Convexity and Its Applications PDF eBook |
Author | GRUBER |
Publisher | Birkhäuser |
Pages | 419 |
Release | 2013-11-11 |
Genre | Science |
ISBN | 3034858582 |
This collection of surveys consists in part of extensions of papers presented at the conferences on convexity at the Technische Universitat Wien (July 1981) and at the Universitat Siegen (July 1982) and in part of articles written at the invitation of the editors. This volume together with the earlier volume «Contributions to Geometry» edited by Tolke and Wills and published by Birkhauser in 1979 should give a fairly good account of many of the more important facets of convexity and its applications. Besides being an up to date reference work this volume can be used as an advanced treatise on convexity and related fields. We sincerely hope that it will inspire future research. Fenchel, in his paper, gives an historical account of convexity showing many important but not so well known facets. The articles of Papini and Phelps relate convexity to problems of functional analysis on nearest points, nonexpansive maps and the extremal structure of convex sets. A bridge to mathematical physics in the sense of Polya and Szego is provided by the survey of Bandle on isoperimetric inequalities, and Bachem's paper illustrates the importance of convexity for optimization. The contribution of Coxeter deals with a classical topic in geometry, the lines on the cubic surface whereas Leichtweiss shows the close connections between convexity and differential geometry. The exhaustive survey of Chalk on point lattices is related to algebraic number theory. A topic important for applications in biology, geology etc.
How Round is Your Circle?
Title | How Round is Your Circle? PDF eBook |
Author | John Bryant |
Publisher | Princeton University Press |
Pages | 352 |
Release | 2008 |
Genre | Mathematics |
ISBN | 9780691131184 |
'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium.
Geometry of Isotropic Convex Bodies
Title | Geometry of Isotropic Convex Bodies PDF eBook |
Author | Silouanos Brazitikos |
Publisher | American Mathematical Soc. |
Pages | 618 |
Release | 2014-04-24 |
Genre | Mathematics |
ISBN | 1470414562 |
The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.
Beautiful Geometry
Title | Beautiful Geometry PDF eBook |
Author | Eli Maor |
Publisher | Princeton University Press |
Pages | 206 |
Release | 2017-04-11 |
Genre | Art |
ISBN | 0691175888 |
An exquisite visual celebration of the 2,500-year history of geometry If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configurations involving infinity. The result is a delightful and informative illustrated tour through the 2,500-year-old history of one of the most important branches of mathematics.
High-Dimensional Probability
Title | High-Dimensional Probability PDF eBook |
Author | Roman Vershynin |
Publisher | Cambridge University Press |
Pages | 299 |
Release | 2018-09-27 |
Genre | Business & Economics |
ISBN | 1108415199 |
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Human Dimension and Interior Space
Title | Human Dimension and Interior Space PDF eBook |
Author | Julius Panero |
Publisher | Watson-Guptill |
Pages | 322 |
Release | 2014-01-21 |
Genre | Architecture |
ISBN | 0770434606 |
The study of human body measurements on a comparative basis is known as anthropometrics. Its applicability to the design process is seen in the physical fit, or interface, between the human body and the various components of interior space. Human Dimension and Interior Space is the first major anthropometrically based reference book of design standards for use by all those involved with the physical planning and detailing of interiors, including interior designers, architects, furniture designers, builders, industrial designers, and students of design. The use of anthropometric data, although no substitute for good design or sound professional judgment should be viewed as one of the many tools required in the design process. This comprehensive overview of anthropometrics consists of three parts. The first part deals with the theory and application of anthropometrics and includes a special section dealing with physically disabled and elderly people. It provides the designer with the fundamentals of anthropometrics and a basic understanding of how interior design standards are established. The second part contains easy-to-read, illustrated anthropometric tables, which provide the most current data available on human body size, organized by age and percentile groupings. Also included is data relative to the range of joint motion and body sizes of children. The third part contains hundreds of dimensioned drawings, illustrating in plan and section the proper anthropometrically based relationship between user and space. The types of spaces range from residential and commercial to recreational and institutional, and all dimensions include metric conversions. In the Epilogue, the authors challenge the interior design profession, the building industry, and the furniture manufacturer to seriously explore the problem of adjustability in design. They expose the fallacy of designing to accommodate the so-called average man, who, in fact, does not exist. Using government data, including studies prepared by Dr. Howard Stoudt, Dr. Albert Damon, and Dr. Ross McFarland, formerly of the Harvard School of Public Health, and Jean Roberts of the U.S. Public Health Service, Panero and Zelnik have devised a system of interior design reference standards, easily understood through a series of charts and situation drawings. With Human Dimension and Interior Space, these standards are now accessible to all designers of interior environments.