Biological Models in Radiopharmaceutical Development
Title | Biological Models in Radiopharmaceutical Development PDF eBook |
Author | R.M. Lambrecht |
Publisher | Springer Science & Business Media |
Pages | 291 |
Release | 2012-12-06 |
Genre | Medical |
ISBN | 9400901593 |
Radiophannaceuticals labeled with short-lived radionuclides are utilized to unravel biochemical processes, and to diagnosis and treat diseases of the living body are-developed through extensive evaluation in ~iological models. 'fhC first attempt to compile information was a volume entitled ANIMAL MODELS IN RADIOTRACER DESIGN that was edited by William C. Eckelman and myself in 1983. The volume had a focus on the animal models that investigators were using in order to design radiotracers that displayed in vivo selectivity as measured by biodistribution and pharmacokinetic studies. A concern in the early days of nuclear medicine was species differences. Often a series of labeled compounds were evaluated in a several different animal models in order to gain confidence that the selected radiotracer would behave appropriately in humans. During the past 12 years there have been remarkable advances in molecular genetics, molecular biology, synthetic radiopharmaceutical chemistry, molecular modeling and visualization, and emission tomography. Biological models can now be selected that are better defined in terms of molecular aspects of the disease process. The development of high resolution PET and SPET for clinical applications facilitates the development of new radiopharmaceuticals by the use of models to quantitatively evaluate drug effects, and progression of disease, and hence to arrive at better diagnosis and treatments for animals and humans. With these advances there is an effective use of biological models, and the refinement of alternatives for the development of new radiophannaceuticals.
Radiopharmaceutical Chemistry
Title | Radiopharmaceutical Chemistry PDF eBook |
Author | Jason S. Lewis |
Publisher | Springer |
Pages | 648 |
Release | 2019-04-02 |
Genre | Medical |
ISBN | 3319989472 |
This book is a comprehensive guide to radiopharmaceutical chemistry. The stunning clinical successes of nuclear imaging and targeted radiotherapy have resulted in rapid growth in the field of radiopharmaceutical chemistry, an essential component of nuclear medicine and radiology. However, at this point, interest in the field outpaces the academic and educational infrastructure needed to train radiopharmaceutical chemists. For example, the vast majority of texts that address radiopharmaceutical chemistry do so only peripherally, focusing instead on nuclear chemistry (i.e. nuclear reactions in reactors), heavy element radiochemistry (i.e. the decomposition of radioactive waste), or solely on the clinical applications of radiopharmaceuticals (e.g. the use of PET tracers in oncology). This text fills that gap by focusing on the chemistry of radiopharmaceuticals, with key coverage of how that knowledge translates to the development of diagnostic and therapeutic radiopharmaceuticals for the clinic. The text is divided into three overarching sections: First Principles, Radiochemistry, and Special Topics. The first is a general overview covering fundamental and broad issues like “The Production of Radionuclides” and “Basics of Radiochemistry”. The second section is the main focus of the book. In this section, each chapter’s author will delve much deeper into the subject matter, covering both well established and state-of-the-art techniques in radiopharmaceutical chemistry. This section will be divided according to radionuclide and will include chapters on radiolabeling methods using all of the common nuclides employed in radiopharmaceuticals, including four chapters on the ubiquitously used fluorine-18 and a “Best of the Rest” chapter to cover emerging radionuclides. Finally, the third section of the book is dedicated to special topics with important information for radiochemists, including “Bioconjugation Methods,” “Click Chemistry in Radiochemistry”, and “Radiochemical Instrumentation.” This is an ideal educational guide for nuclear medicine physicians, radiologists, and radiopharmaceutical chemists, as well as residents and trainees in all of these areas.
Advancing Nuclear Medicine Through Innovation
Title | Advancing Nuclear Medicine Through Innovation PDF eBook |
Author | National Research Council |
Publisher | National Academies Press |
Pages | 173 |
Release | 2007-09-11 |
Genre | Medical |
ISBN | 0309134153 |
Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.
Targeted Radionuclide Therapy
Title | Targeted Radionuclide Therapy PDF eBook |
Author | Tod W. Speer |
Publisher | Lippincott Williams & Wilkins |
Pages | 564 |
Release | 2012-03-28 |
Genre | Medical |
ISBN | 1451153260 |
Radioimmunotherapy, also known as systemic targeted radiation therapy, uses antibodies, antibody fragments, or compounds as carriers to guide radiation to the targets. It is a topic rapidly increasing in importance and success in treatment of cancer patients. This book represents a comprehensive amalgamation of the radiation physics, chemistry, radiobiology, tumor models, and clinical data for targeted radionuclide therapy. It outlines the current challenges and provides a glimpse at future directions. With significant advances in cell biology and molecular engineering, many targeting constructs are now available that will safely deliver these highly cytotoxic radionuclides in a targeted fashion. A companion website includes the full text and an image bank.
Molecular Imaging
Title | Molecular Imaging PDF eBook |
Author | Shankar Vallabhajosula |
Publisher | Springer Science & Business Media |
Pages | 379 |
Release | 2009-07-13 |
Genre | Medical |
ISBN | 3540767355 |
Radioisotope-based molecular imaging probes provide unprecedented insight into biochemistry and function involved in both normal and disease states of living systems, with unbiased in vivo measurement of regional radiotracer activities offering very high specificity and sensitivity. No other molecular imaging technology including functional magnetic resonance imaging (fMRI) can provide such high sensitivity and specificity at a tracer level. The applications of this technology can be very broad ranging from drug development, pharmacokinetics, clinical investigations, and finally to routine diagnostics in radiology. The design and the development of radiopharmaceuticals for molecular imaging studies using PET/MicroPET or SPECT/MicroSPECT are a unique challenge. This book is intended for a broad audience and written with the main purpose of educating the reader on various aspects including potential clinical utility, limitations of drug development, and regulatory compliance and approvals.
Handbook of Radiopharmaceuticals
Title | Handbook of Radiopharmaceuticals PDF eBook |
Author | Michael J. Welch |
Publisher | John Wiley & Sons |
Pages | 872 |
Release | 2003-01-17 |
Genre | Medical |
ISBN | 9780471495604 |
A comprehensive, authoritative and up-to-date reference for the newcomer to radiopharmaceuticals and those already in the field. Radiopharmaceuticals are used to detect and characterise disease processes, or normal biological function, in living cells, animals or humans. Used as tracer molecules, they map the distribution, uptake and metabolism of the molecule in clinical studies, basic research or applied research. The area of radiopharmaceuticals is expanding rapidly. The number of PET centers in the world is increasing at 20% per year, and many drug companies are utilising PET and other forms of radiopharmaceutical imaging to evaluate products. * Readers will find coverage on a number of important topics such as radionuclide production, PET and drug development, and regulations * Explains how to use radiopharmaceuticals for the diagnosis and therapy of cancer and other diseases * The editors and a majority of the contributors are from the United States
Current Directions in Radiopharmaceutical Research and Development
Title | Current Directions in Radiopharmaceutical Research and Development PDF eBook |
Author | Steven J. Mather |
Publisher | Springer Science & Business Media |
Pages | 248 |
Release | 2012-12-06 |
Genre | Medical |
ISBN | 9400917686 |
Radiophannaceutical research has recently undergone a major change in direction. In past years it has been concerned mainly with the development of perfusion tracers, the biodistribution of which reflect the regional blood flow to areas of major organs such as the heart and brain. However, a major new direction of interest now lies in the development of receptor-binding radio-tracers which can be used to perform in-vivo characterisation of diseased tissues and it is likely that much of the future research in this field will follow this direction. The difficulties in developing such tracers are considerable. The researcher must first identify a promising target for radiopharmaceutical development. High specific activity radioactive molecules must be designed and synthesised which will both bind to the target receptor with high affinity, and also have the physicochemical characteristics which will allow them to reach the target site in sufficient quantity while at the same time showing minimal uptake in non-target tissues. Thus the knowledge base required for radiophannaceutical development has now expanded beyond the limits of radiopharmaceutical chemistry to include aspects of biochemistry, molecular biology and conventional drug design. The portfolio of basic knowledge required to support current radiopharmaceutical development is changing and scientists working in this arena need to be trained in this regard. At the same time, the very latest developments in the field need to be communicated to the scientific community in order to stimulate the advancement of this exciting new direction of research.