Atoms in Molecules
Title | Atoms in Molecules PDF eBook |
Author | Richard F. W. Bader |
Publisher | Oxford University Press on Demand |
Pages | 438 |
Release | 1994 |
Genre | Science |
ISBN | 9780198558651 |
The molecular structure hypothesis - that a molecule is a collection of atoms linked by a network of bonds - was forged in the crucible of nineteenth century experimental chemistry and has continued to serve as the principal means of ordering and classifying the observations of chemistry. There is a difficulty with the hypothesis, however, in that it is not related directly to the physics which governs the motions of the nuclei and electrons that make up the atoms and the bonds. It isthe purpose of this important book - now available in paperback for the first time - to show that a theory can be developed to underpin the molecular structure hypothesis - that the atoms in a molecule are real, with properties predicted and defined by the laws of quantum mechanics can be incorporated into the resulting theory - a theory of atoms in molecules. The book is aimed at those scientists responsible for performing the experiments and collecting the observations on the properties ofmatter at the atomic level, in the belief that the transformation of qualitative concepts into a qualitative theory will serve to deepen our understanding of chemistry.
Atoms and Molecules
Title | Atoms and Molecules PDF eBook |
Author | Mitchel Weissbluth |
Publisher | Elsevier |
Pages | 730 |
Release | 2012-12-02 |
Genre | Science |
ISBN | 032314294X |
Atoms and Molecules describes the basic properties of atoms and molecules in terms of group theoretical methods in atomic and molecular physics. The book reviews mathematical concepts related to angular momentum properties, finite and continuous rotation groups, tensor operators, the Wigner-Eckart theorem, vector fields, and vector spherical harmonics. The text also explains quantum mechanics, including symmetry considerations, second quantization, density matrices, time-dependent, and time-independent approximation methods. The book explains atomic structure, particularly the Dirac equation in which its nonrelativistic approximation provides the basis for the derivation of the Hamiltonians for all important interactions, such as spin-orbit, external fields, hyperfine. Along with multielectron atoms, the text discusses multiplet theory, the Hartree-Fock formulation, as well as the electromagnetic radiation fields, their interactions with atoms in first and higher orders. The book explores molecules and complexes, including the Born-Oppenheimer approximation, molecular orbitals, the self-consistent field method, electronic states, vibrational and rotational states, molecular spectra, and the ligand field theory. The book can prove useful for graduate or advanced students and academicians in the field of general and applied physics.
Reference Data on Atoms, Molecules, and Ions
Title | Reference Data on Atoms, Molecules, and Ions PDF eBook |
Author | A.A. Radzig |
Publisher | Springer Science & Business Media |
Pages | 475 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642820484 |
This reference book contains information about the structure and properties of atomic and molecular particles, as well as some of the nuclear parameters. It includes data which can be of use when studying atomic and molecular processes in the physics of gases, chemistry of gases and gas optics, in plasma physics and plasma chemistry, in physical chemistry and radiation chemistry, in geophysics, astrophysics, solid-state physics and a variety of cross-discipli nary fields of science and technology. Our aim was to collect carefully selected and estimated numerical values for a wide circle of microscopic parameters in a relatively "not thick" book. These values are of constant use in the work of practical investigators. In essence, the book represents a substantially revised and extended edi tion of our reference book published in Russian in 1980. Two main reasons made it necessary to rework the material. On the one hand, a great deal of new high-quality data has appeared in the past few years and furthermore we have enlisted many sources of information previously inaccessible to us. On the other hand, we have tried to insert extensive information on new, rapidly progressing branches of physical research, such as multiply charged ions, Rydberg atoms, van der Waals and excimer molecules, complex ions, etc. All this brings us to the very edge of studies being carried out in the field.
See Inside Atoms and Molecules
Title | See Inside Atoms and Molecules PDF eBook |
Author | Rosie Dickins |
Publisher | Usborne |
Pages | 16 |
Release | 2020 |
Genre | Juvenile Nonfiction |
ISBN | 9781474943642 |
Find out all about atoms, what they are and where they come from - and how these tiny particles combine to make up EVERYTHING in the universe (including you). Packed with intriguing facts, this is an entertaining and accessible introduction to key scientific ideas. Part of Usborne's bestselling "See Inside" lift-the-flap non-fiction series, which includes over 40 titles. With beautiful full-colour illustrations and fascinating details to discover on every page. Written in consultation with an expert chemist.
The Quantum Theory of Atoms in Molecules
Title | The Quantum Theory of Atoms in Molecules PDF eBook |
Author | Chérif F. Matta |
Publisher | John Wiley & Sons |
Pages | 567 |
Release | 2007-04-09 |
Genre | Science |
ISBN | 3527307486 |
This book distills the knowledge gained from research into atoms in molecules over the last 10 years into a unique, handy reference. Throughout, the authors address a wide audience, such that this volume may equally be used as a textbook without compromising its research-oriented character. Clearly structured, the text begins with advances in theory before moving on to theoretical studies of chemical bonding and reactivity. There follow separate sections on solid state and surfaces as well as experimental electron densities, before finishing with applications in biological sciences and drug-design. The result is a must-have for physicochemists, chemists, physicists, spectroscopists and materials scientists.
Explore Atoms and Molecules!
Title | Explore Atoms and Molecules! PDF eBook |
Author | Janet Slingerland |
Publisher | Nomad Press |
Pages | 195 |
Release | 2017-04-11 |
Genre | Juvenile Nonfiction |
ISBN | 1619304937 |
Atoms and molecules are the basic building blocks of matter. Matter is every physical thing around us in the universe, including our own bodies! In Explore Atoms and Molecules! With 25 Great Projects, readers ages 7 to 10 investigate the structure of atoms and learn how atoms fit together to form molecules and materials. If everything is made out of atoms and molecules, why do people look different from dogs and doorknobs? In Explore Atoms and Molecules, readers discover that the characteristics of a material are determined by the way the atoms and molecules connect, and study how chemical reactions change these connections to create everything we know. This book discusses the elements on the periodic table and why they are grouped into families, encouraging the exploration of meaningful classification systems. States of matter and mixtures and compounds round out the exploration of atoms and molecules! This book supports the maker movement with lots of hands-on activities that illuminate the concepts of chemistry. Readers build 3-D models of molecules and create a periodic table guessing game. Fascinating sidebars offer opportunities for readers to connect the text with real-world science, and cartoon illustrations provide a fun foundation for learning.
Atoms in Molecules
Title | Atoms in Molecules PDF eBook |
Author | Paul L. A. Popelier |
Publisher | Longman Publishing Group |
Pages | 0 |
Release | 2000 |
Genre | Atoms |
ISBN | 9780582367982 |
Atoms in Molecules (AIM) is a powerful and novel theory for understanding chemistry, acting as a bridge between fundamental chemical concepts - such as the atom, the bond and molecular structure - and quantum mechanics. It is used increasingly in both theoretical and crystallographic research internationally, including its use in interpreting experimental charge densities. This book provides a balanced, consistent and didactic account of this exciting theory, explaining its potential impact and making it accessible to a wide audience.