Arithmetic and Geometry Around Quantization
Title | Arithmetic and Geometry Around Quantization PDF eBook |
Author | Özgür Ceyhan |
Publisher | Springer Science & Business Media |
Pages | 295 |
Release | 2010-01-12 |
Genre | Mathematics |
ISBN | 0817648313 |
This volume comprises both research and survey articles originating from the conference on Arithmetic and Geometry around Quantization held in Istanbul in 2006. A wide range of topics related to quantization are covered, thus aiming to give a glimpse of a broad subject in very different perspectives.
Lectures on the Geometry of Quantization
Title | Lectures on the Geometry of Quantization PDF eBook |
Author | Sean Bates |
Publisher | American Mathematical Soc. |
Pages | 150 |
Release | 1997 |
Genre | Mathematics |
ISBN | 9780821807989 |
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.
Mathematical Quantization
Title | Mathematical Quantization PDF eBook |
Author | Nik Weaver |
Publisher | CRC Press |
Pages | 297 |
Release | 2001-05-31 |
Genre | Mathematics |
ISBN | 1420036238 |
With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a
Renormalization and Effective Field Theory
Title | Renormalization and Effective Field Theory PDF eBook |
Author | Kevin Costello |
Publisher | American Mathematical Soc. |
Pages | 264 |
Release | 2011 |
Genre | Mathematics |
ISBN | 0821852884 |
Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorious difficulties of renormalization have made quantum field theory very inaccessible for mathematicians. This provides complete mathematical foundations for the theory of perturbative quantum field theory, based on Wilson's ideas of low-energy effective field theory and on the Batalin-Vilkovisky formalism.
Noncommutative Geometry, Quantum Fields and Motives
Title | Noncommutative Geometry, Quantum Fields and Motives PDF eBook |
Author | Alain Connes |
Publisher | American Mathematical Soc. |
Pages | 810 |
Release | 2019-03-13 |
Genre | Mathematics |
ISBN | 1470450453 |
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
The Geometry of Heisenberg Groups
Title | The Geometry of Heisenberg Groups PDF eBook |
Author | Ernst Binz |
Publisher | American Mathematical Soc. |
Pages | 321 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821844954 |
"The three-dimensional Heisenberg group, being a quite simple non-commutative Lie group, appears prominently in various applications of mathematics. The goal of this book is to present basic geometric and algebraic properties of the Heisenberg group and its relation to other important mathematical structures (the skew field of quaternions, symplectic structures, and representations) and to describe some of its applications. In particular, the authors address such subjects as signal analysis and processing, geometric optics, and quantization. In each case, the authors present necessary details of the applied topic being considered." "This book manages to encompass a large variety of topics being easily accessible in its fundamentals. It can be useful to students and researchers working in mathematics and in applied mathematics."--BOOK JACKET.
Geometric Asymptotics
Title | Geometric Asymptotics PDF eBook |
Author | Victor Guillemin |
Publisher | American Mathematical Soc. |
Pages | 500 |
Release | 1990 |
Genre | Mathematics |
ISBN | 0821816330 |
Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence.