Approximations and Endomorphism Algebras of Modules

Approximations and Endomorphism Algebras of Modules
Title Approximations and Endomorphism Algebras of Modules PDF eBook
Author Rüdiger Göbel
Publisher Walter de Gruyter
Pages 1002
Release 2012-10-01
Genre Mathematics
ISBN 3110218119

Download Approximations and Endomorphism Algebras of Modules Book in PDF, Epub and Kindle

This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions, and these are generally viewed as obstacles to classification. In order to overcome this problem, the approximation theory of modules has been developed. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by those from C. These approximations are neither unique nor functorial in general, but there is a rich supply available appropriate to the requirements of various particular applications. The authors bring the two theories together. The first volume, Approximations, sets the scene in Part I by introducing the main classes of modules relevant here: the S-complete, pure-injective, Mittag-Leffler, and slender modules. Parts II and III of the first volume develop the key methods of approximation theory. Some of the recent applications to the structure of modules are also presented here, notably for tilting, cotilting, Baer, and Mittag-Leffler modules. In the second volume, Predictions, further basic instruments are introduced: the prediction principles, and their applications to proving realization theorems. Moreover, tools are developed there for answering problems motivated in algebraic topology. The authors concentrate on the impossibility of classification for modules over general rings. The wild character of many categories C of modules is documented here by the realization theorems that represent critical R-algebras over commutative rings R as endomorphism algebras of modules from C. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.

Approximations and Endomorphism Algebras of Modules

Approximations and Endomorphism Algebras of Modules
Title Approximations and Endomorphism Algebras of Modules PDF eBook
Author Rüdiger Göbel
Publisher de Gruyter
Pages 0
Release 2006
Genre Approximation theory
ISBN 9783110110791

Download Approximations and Endomorphism Algebras of Modules Book in PDF, Epub and Kindle

The category of all modules over a general associative ring is too complex to admit any reasonable classification. Thus, unless the ring is of finite representation type, one must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions and these are generally viewed as obstacles to the classification. Realization theorems have thus become important indicators of the non-classification theory of modules. In order to overcome this problem, approximation theory of modules has been developed over the past few decades. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by ones from C. These approximations are neither unique nor functorial in general, but there is always a rich supply available appropriate to the requirements of various particular applications. Thus approximation theory has developed into an important part of the classification theory of modules. In this monograph the two methods are brought together. First the approximation theory of modules is developed and some of its recent applications, notably to infinite dimensional tilting theory, are presented. Then some prediction principles from set theory are introduced and these become the principal tools in the establishment of appropriate realization theorems. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.

Approximations and Endomorphism Algebras of Modules: Predictions

Approximations and Endomorphism Algebras of Modules: Predictions
Title Approximations and Endomorphism Algebras of Modules: Predictions PDF eBook
Author Rüdiger Göbel
Publisher ISSN
Pages 0
Release 2012
Genre Approximation theory
ISBN 9783110218107

Download Approximations and Endomorphism Algebras of Modules: Predictions Book in PDF, Epub and Kindle

This monograph- now in its second revised and extended edition- provides a thorough treatment of module theory, a subfield of algebra. The authors develop an approximation theory as well as realization theorems and present some of its recent applications, notably to infinite-dimensional combinatorics and model theory. The book starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.

Approximations and Endomorphism Algebras of Modules

Approximations and Endomorphism Algebras of Modules
Title Approximations and Endomorphism Algebras of Modules PDF eBook
Author Rüdiger Göbel
Publisher
Pages 0
Release 2012
Genre
ISBN

Download Approximations and Endomorphism Algebras of Modules Book in PDF, Epub and Kindle

Arithmetical Rings and Endomorphisms

Arithmetical Rings and Endomorphisms
Title Arithmetical Rings and Endomorphisms PDF eBook
Author Askar Tuganbaev
Publisher Walter de Gruyter GmbH & Co KG
Pages 176
Release 2019-06-04
Genre Mathematics
ISBN 3110659824

Download Arithmetical Rings and Endomorphisms Book in PDF, Epub and Kindle

This book offers a comprehensive account of not necessarily commutative arithmetical rings, examining structural and homological properties of modules over arithmetical rings and summarising the interplay between arithmetical rings and other rings, whereas modules with extension properties of submodule endomorphisms are also studied in detail. Graduate students and researchers in ring and module theory will find this book particularly valuable.

Modules over Discrete Valuation Rings

Modules over Discrete Valuation Rings
Title Modules over Discrete Valuation Rings PDF eBook
Author Piotr A. Krylov
Publisher Walter de Gruyter GmbH & Co KG
Pages 397
Release 2018-09-24
Genre Mathematics
ISBN 3110609851

Download Modules over Discrete Valuation Rings Book in PDF, Epub and Kindle

This book provides the first systematic treatment of modules over discrete valuation domains, which play an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text along with interesting open problems. This updated edition presents new approaches on p-adic integers and modules, and on the determinability of a module by its automorphism group. Contents Preliminaries Basic facts Endomorphism rings of divisible and complete modules Representation of rings by endomorphism rings Torsion-free modules Mixed modules Determinity of modules by their endomorphism rings Modules with many endomorphisms or automorphisms

Groups, Modules, and Model Theory - Surveys and Recent Developments

Groups, Modules, and Model Theory - Surveys and Recent Developments
Title Groups, Modules, and Model Theory - Surveys and Recent Developments PDF eBook
Author Manfred Droste
Publisher Springer
Pages 493
Release 2017-06-02
Genre Mathematics
ISBN 331951718X

Download Groups, Modules, and Model Theory - Surveys and Recent Developments Book in PDF, Epub and Kindle

This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.