Applying Molecular and Materials Modeling

Applying Molecular and Materials Modeling
Title Applying Molecular and Materials Modeling PDF eBook
Author Phillip R. Westmoreland
Publisher Springer Science & Business Media
Pages 596
Release 2013-04-17
Genre Science
ISBN 9401707650

Download Applying Molecular and Materials Modeling Book in PDF, Epub and Kindle

Computational molecular and materials modeling has emerged to deliver solid technological impacts in the chemical, pharmaceutical, and materials industries. It is not the all-predictive science fiction that discouraged early adopters in the 1980s. Rather, it is proving a valuable aid to designing and developing new products and processes. People create, not computers, and these tools give them qualitative relations and quantitative properties that they need to make creative decisions. With detailed analysis and examples from around the world, Applying Molecular and Materials Modeling describes the science, applications, and infrastructures that have proven successful. Computational quantum chemistry, molecular simulations, informatics, desktop graphics, and high-performance computing all play important roles. At the same time, the best technology requires the right practitioners, the right organizational structures, and - most of all - a clearly understood blend of imagination and realism that propels technological advances. This book is itself a powerful tool to help scientists, engineers, and managers understand and take advantage of these advances.

Molecular Modeling Techniques In Material Sciences

Molecular Modeling Techniques In Material Sciences
Title Molecular Modeling Techniques In Material Sciences PDF eBook
Author Jörg-Rüdiger Hill
Publisher CRC Press
Pages 328
Release 2005-03-30
Genre Science
ISBN 9780824724191

Download Molecular Modeling Techniques In Material Sciences Book in PDF, Epub and Kindle

Increasingly useful in materials research and development, molecular modeling is a method that combines computational chemistry techniques with graphics visualization for simulating and predicting the structure, chemical processes, and properties of materials. Molecular Modeling Techniques in Materials Science explores the impact of using molecular modeling for various simulations in industrial settings. It provides an overview of commonly used methods in atomistic simulation of a broad range of materials, including oxides, superconductors, semiconductors, zeolites, glass, and nanomaterials. The book presents information on how to handle different materials and how to choose an appropriate modeling method or combination of techniques to better predict material behavior and pinpoint effective solutions. Discussing the advantages and disadvantages of various approaches, the authors develop a framework for identifying objectives, defining design parameters, measuring accuracy/accounting for error, validating and assessing various data collected, supporting software needs, and other requirements for planning a modeling project. The book integrates the remarkable developments in computation, such as advanced graphics and faster, cheaper workstations and PCs with new advances in theoretical techniques and numerical algorithms. Molecular Modeling Techniques in Materials Science presents the background and tools for chemists and physicists to perform in-silico experiments to understand relationships between the properties of materials and the underlying atomic structure. These insights result in more accurate data for designing application-specific materials that withstand real process conditions, including hot temperatures and high pressures.

Understanding Molecular Simulation

Understanding Molecular Simulation
Title Understanding Molecular Simulation PDF eBook
Author Daan Frenkel
Publisher Elsevier
Pages 661
Release 2001-10-19
Genre Science
ISBN 0080519989

Download Understanding Molecular Simulation Book in PDF, Epub and Kindle

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

Modeling of Molecular Properties

Modeling of Molecular Properties
Title Modeling of Molecular Properties PDF eBook
Author Peter Comba
Publisher Wiley-VCH
Pages 0
Release 2011-10-17
Genre Science
ISBN 9783527330218

Download Modeling of Molecular Properties Book in PDF, Epub and Kindle

Molecular modeling encompasses applied theoretical approaches and computational techniques to model structures and properties of molecular compounds and materials in order to predict and / or interpret their properties. The modeling covered in this book ranges from methods for small chemical to large biological molecules and materials. With its comprehensive coverage of important research fields in molecular and materials science, this is a must-have for all organic, inorganic and biochemists as well as materials scientists interested in applied theoretical and computational chemistry. The 28 chapters, written by an international group of experienced theoretically oriented chemists, are grouped into four parts: Theory and Concepts; Applications in Homogeneous Catalysis; Applications in Pharmaceutical and Biological Chemistry; and Applications in Main Group, Organic and Organometallic Chemistry. The various chapters include concept papers, tutorials, and research reports.

An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation

An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
Title An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation PDF eBook
Author Gregory R. Bowman
Publisher Springer Science & Business Media
Pages 148
Release 2013-12-02
Genre Science
ISBN 9400776063

Download An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation Book in PDF, Epub and Kindle

The aim of this book volume is to explain the importance of Markov state models to molecular simulation, how they work, and how they can be applied to a range of problems. The Markov state model (MSM) approach aims to address two key challenges of molecular simulation: 1) How to reach long timescales using short simulations of detailed molecular models. 2) How to systematically gain insight from the resulting sea of data. MSMs do this by providing a compact representation of the vast conformational space available to biomolecules by decomposing it into states sets of rapidly interconverting conformations and the rates of transitioning between states. This kinetic definition allows one to easily vary the temporal and spatial resolution of an MSM from high-resolution models capable of quantitative agreement with (or prediction of) experiment to low-resolution models that facilitate understanding. Additionally, MSMs facilitate the calculation of quantities that are difficult to obtain from more direct MD analyses, such as the ensemble of transition pathways. This book introduces the mathematical foundations of Markov models, how they can be used to analyze simulations and drive efficient simulations, and some of the insights these models have yielded in a variety of applications of molecular simulation.

Molecular Modeling and Simulation

Molecular Modeling and Simulation
Title Molecular Modeling and Simulation PDF eBook
Author Tamar Schlick
Publisher Springer Science & Business Media
Pages 669
Release 2013-04-18
Genre Science
ISBN 0387224645

Download Molecular Modeling and Simulation Book in PDF, Epub and Kindle

Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text

Atomistic Modeling of Materials Failure

Atomistic Modeling of Materials Failure
Title Atomistic Modeling of Materials Failure PDF eBook
Author Markus J. Buehler
Publisher Springer Science & Business Media
Pages 547
Release 2008-08-07
Genre Science
ISBN 0387764267

Download Atomistic Modeling of Materials Failure Book in PDF, Epub and Kindle

This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.