Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version)
Title | Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version) PDF eBook |
Author | Richard Haberman |
Publisher | Pearson |
Pages | 784 |
Release | 2018-03-15 |
Genre | Boundary value problems |
ISBN | 9780134995434 |
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.
Elementary Applied Partial Differential Equations
Title | Elementary Applied Partial Differential Equations PDF eBook |
Author | Richard Haberman |
Publisher | |
Pages | 0 |
Release | 1998 |
Genre | Boundary value problems |
ISBN | 9780132638074 |
This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.
Partial Differential Equations and Boundary-Value Problems with Applications
Title | Partial Differential Equations and Boundary-Value Problems with Applications PDF eBook |
Author | Mark A. Pinsky |
Publisher | American Mathematical Soc. |
Pages | 545 |
Release | 2011 |
Genre | Mathematics |
ISBN | 0821868896 |
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Finite Difference Methods for Ordinary and Partial Differential Equations
Title | Finite Difference Methods for Ordinary and Partial Differential Equations PDF eBook |
Author | Randall J. LeVeque |
Publisher | SIAM |
Pages | 356 |
Release | 2007-01-01 |
Genre | Mathematics |
ISBN | 9780898717839 |
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Partial Differential Equations with Fourier Series and Boundary Value Problems
Title | Partial Differential Equations with Fourier Series and Boundary Value Problems PDF eBook |
Author | Nakhle H. Asmar |
Publisher | Courier Dover Publications |
Pages | 818 |
Release | 2017-03-23 |
Genre | Mathematics |
ISBN | 0486820831 |
Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; instructions for obtaining the Instructor Solutions Manual is included in the book. 2004 edition, with minor revisions.
Partial Differential Equations
Title | Partial Differential Equations PDF eBook |
Author | Walter A. Strauss |
Publisher | John Wiley & Sons |
Pages | 467 |
Release | 2007-12-21 |
Genre | Mathematics |
ISBN | 0470054565 |
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Linear Partial Differential Equations for Scientists and Engineers
Title | Linear Partial Differential Equations for Scientists and Engineers PDF eBook |
Author | Tyn Myint-U |
Publisher | Springer Science & Business Media |
Pages | 790 |
Release | 2007-04-05 |
Genre | Mathematics |
ISBN | 0817645608 |
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.