Applications Of Tensor Analysis In Continuum Mechanics

Applications Of Tensor Analysis In Continuum Mechanics
Title Applications Of Tensor Analysis In Continuum Mechanics PDF eBook
Author Victor A Eremeyev
Publisher World Scientific
Pages 426
Release 2018-07-10
Genre Technology & Engineering
ISBN 9813238984

Download Applications Of Tensor Analysis In Continuum Mechanics Book in PDF, Epub and Kindle

'A strong point of this book is its coverage of tensor theory, which is herein deemed both more readable and more substantial than many other historic continuum mechanics books. The book is self-contained. It serves admirably as a reference resource on fundamental principles and equations of tensor mathematics applied to continuum mechanics. Exercises and problem sets are useful for teaching … The book is highly recommended as both a graduate textbook and a reference work for students and more senior researchers involved in theoretical and mathematical modelling of continuum mechanics of materials. Key concepts are well described in the text and are supplemented by informative exercises and problem sets with solutions, and comprehensive Appendices provide important equations for ease of reference.'Contemporary PhysicsA tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions.This book provides a clear, concise, and self-contained treatment of tensors and tensor fields. It covers the foundations of linear elasticity, shell theory, and generalized continuum media, offers hints, answers, and full solutions for many of the problems and exercises, and Includes a handbook-style summary of important tensor formulas.The book can be useful for beginners who are interested in the basics of tensor calculus. It also can be used by experienced readers who seek a comprehensive review on applications of the tensor calculus in mechanics.

Tensor Algebra and Tensor Analysis for Engineers

Tensor Algebra and Tensor Analysis for Engineers
Title Tensor Algebra and Tensor Analysis for Engineers PDF eBook
Author Mikhail Itskov
Publisher Springer Science & Business Media
Pages 253
Release 2009-04-30
Genre Technology & Engineering
ISBN 3540939075

Download Tensor Algebra and Tensor Analysis for Engineers Book in PDF, Epub and Kindle

There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.

Tensor Analysis with Applications in Mechanics

Tensor Analysis with Applications in Mechanics
Title Tensor Analysis with Applications in Mechanics PDF eBook
Author L. P. Lebedev
Publisher World Scientific
Pages 378
Release 2010
Genre Mathematics
ISBN 9814313998

Download Tensor Analysis with Applications in Mechanics Book in PDF, Epub and Kindle

1. Preliminaries. 1.1. The vector concept revisited. 1.2. A first look at tensors. 1.3. Assumed background. 1.4. More on the notion of a vector. 1.5. Problems -- 2. Transformations and vectors. 2.1. Change of basis. 2.2. Dual bases. 2.3. Transformation to the reciprocal frame. 2.4. Transformation between general frames. 2.5. Covariant and contravariant components. 2.6. The cross product in index notation. 2.7. Norms on the space of vectors. 2.8. Closing remarks. 2.9. Problems -- 3. Tensors. 3.1. Dyadic quantities and tensors. 3.2. Tensors from an operator viewpoint. 3.3. Dyadic components under transformation. 3.4. More dyadic operations. 3.5. Properties of second-order tensors. 3.6. Eigenvalues and eigenvectors of a second-order symmetric tensor. 3.7. The Cayley-Hamilton theorem. 3.8. Other properties of second-order tensors. 3.9. Extending the Dyad idea. 3.10. Tensors of the fourth and higher orders. 3.11. Functions of tensorial arguments. 3.12. Norms for tensors, and some spaces. 3.13. Differentiation of tensorial functions. 3.14. Problems -- 4. Tensor fields. 4.1. Vector fields. 4.2. Differentials and the nabla operator. 4.3. Differentiation of a vector function. 4.4. Derivatives of the frame vectors. 4.5. Christoffel coefficients and their properties. 4.6. Covariant differentiation. 4.7. Covariant derivative of a second-order tensor. 4.8. Differential operations. 4.9. Orthogonal coordinate systems. 4.10. Some formulas of integration. 4.11. Problems -- 5. Elements of differential geometry. 5.1. Elementary facts from the theory of curves. 5.2. The torsion of a curve. 5.3. Frenet-Serret equations. 5.4. Elements of the theory of surfaces. 5.5. The second fundamental form of a surface. 5.6. Derivation formulas. 5.7. Implicit representation of a curve; contact of curves. 5.8. Osculating paraboloid. 5.9. The principal curvatures of a surface. 5.10. Surfaces of revolution. 5.11. Natural equations of a curve. 5.12. A word about rigor. 5.13. Conclusion. 5.14. Problems -- 6. Linear elasticity. 6.1. Stress tensor. 6.2. Strain tensor. 6.3. Equation of motion. 6.4. Hooke's law. 6.5. Equilibrium equations in displacements. 6.6. Boundary conditions and boundary value problems. 6.7. Equilibrium equations in stresses. 6.8. Uniqueness of solution for the boundary value problems of elasticity. 6.9. Betti's reciprocity theorem. 6.10. Minimum total energy principle. 6.11. Ritz's method. 6.12. Rayleigh's variational principle. 6.13. Plane waves. 6.14. Plane problems of elasticity. 6.15. Problems -- 7. Linear elastic shells. 7.1. Some useful formulas of surface theory. 7.2. Kinematics in a neighborhood of [symbol]. 7.3. Shell equilibrium equations. 7.4. Shell deformation and strains; Kirchhoff's hypotheses. 7.5. Shell energy. 7.6. Boundary conditions. 7.7. A few remarks on the Kirchhoff-Love theory. 7.8. Plate theory. 7.9. On Non-classical theories of plates and shells

Tensor Algebra and Tensor Analysis for Engineers

Tensor Algebra and Tensor Analysis for Engineers
Title Tensor Algebra and Tensor Analysis for Engineers PDF eBook
Author Mikhail Itskov
Publisher Springer Science & Business Media
Pages 279
Release 2012-08-13
Genre Science
ISBN 3642308791

Download Tensor Algebra and Tensor Analysis for Engineers Book in PDF, Epub and Kindle

There is a large gap between the engineering course in tensor algebra on the one hand and the treatment of linear transformations within classical linear algebra on the other hand. The aim of this modern textbook is to bridge this gap by means of the consequent and fundamental exposition. The book primarily addresses engineering students with some initial knowledge of matrix algebra. Thereby the mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises are provided in the book and are accompanied by solutions, enabling self-study. The last chapters of the book deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and are therefore of high interest for PhD-students and scientists working in this area. This third edition is completed by a number of additional figures, examples and exercises. The text and formulae have been revised and improved where necessary.

Introduction to Tensor Calculus and Continuum Mechanics

Introduction to Tensor Calculus and Continuum Mechanics
Title Introduction to Tensor Calculus and Continuum Mechanics PDF eBook
Author John Henry Heinbockel
Publisher
Pages 367
Release 1996
Genre
ISBN

Download Introduction to Tensor Calculus and Continuum Mechanics Book in PDF, Epub and Kindle

Tensor Analysis

Tensor Analysis
Title Tensor Analysis PDF eBook
Author L. P. Lebedev
Publisher World Scientific
Pages 208
Release 2003
Genre Mathematics
ISBN 9789812564467

Download Tensor Analysis Book in PDF, Epub and Kindle

Tensor analysis is an essential tool in any science (e.g. engineering, physics, mathematical biology) that employs a continuumdescription. This concise text offers a straightforward treatment ofthe subject suitable for the student or practicing engineer

Tensor Analysis and Continuum Mechanics

Tensor Analysis and Continuum Mechanics
Title Tensor Analysis and Continuum Mechanics PDF eBook
Author Wilhelm Flügge
Publisher Springer Science & Business Media
Pages 215
Release 2013-11-11
Genre Science
ISBN 3642883826

Download Tensor Analysis and Continuum Mechanics Book in PDF, Epub and Kindle

Through several centuries there has been a lively interaction between mathematics and mechanics. On the one side, mechanics has used mathemat ics to formulate the basic laws and to apply them to a host of problems that call for the quantitative prediction of the consequences of some action. On the other side, the needs of mechanics have stimulated the development of mathematical concepts. Differential calculus grew out of the needs of Newtonian dynamics; vector algebra was developed as a means . to describe force systems; vector analysis, to study velocity fields and force fields; and the calcul~s of variations has evolved from the energy principles of mechan ics. In recent times the theory of tensors has attracted the attention of the mechanics people. Its very name indicates its origin in the theory of elasticity. For a long time little use has been made of it in this area, but in the last decade its usefulness in the mechanics of continuous media has been widely recognized. While the undergraduate textbook literature in this country was becoming "vectorized" (lagging almost half a century behind the development in Europe), books dealing with various aspects of continuum mechanics took to tensors like fish to water. Since many authors were not sure whether their readers were sufficiently familiar with tensors~ they either added' a chapter on tensors or wrote a separate book on the subject.