Analytic Function Theory, Volume I
Title | Analytic Function Theory, Volume I PDF eBook |
Author | Einar Hille |
Publisher | American Mathematical Soc. |
Pages | 322 |
Release | 2012-04-11 |
Genre | Mathematics |
ISBN | 082187568X |
Second Edition. This famous work is a textbook that emphasizes the conceptual and historical continuity of analytic function theory. The second volume broadens from a textbook to a textbook-treatise, covering the "canonical" topics (including elliptic functions, entire and meromorphic functions, as well as conformal mapping, etc.) and other topics nearer the expanding frontier of analytic function theory. In the latter category are the chapters on majorization and on functions holomorphic in a half-plane.
Analytic Function Theory
Title | Analytic Function Theory PDF eBook |
Author | Einar Hille |
Publisher | American Mathematical Soc. |
Pages | 510 |
Release | 2002 |
Genre | Mathematics |
ISBN | 9780821829141 |
Emphasizes the conceptual and historical continuity of analytic function theory. This work covers topics including elliptic functions, entire and meromorphic functions, as well as conformal mapping. It features chapters on majorization and on functions holomorphic in a half-plane.
Analytic Functions of Several Complex Variables
Title | Analytic Functions of Several Complex Variables PDF eBook |
Author | Robert Clifford Gunning |
Publisher | American Mathematical Soc. |
Pages | 338 |
Release | 2009 |
Genre | Mathematics |
ISBN | 0821821652 |
The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. This title intends to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces.
Elementary Theory of Analytic Functions of One or Several Complex Variables
Title | Elementary Theory of Analytic Functions of One or Several Complex Variables PDF eBook |
Author | Henri Cartan |
Publisher | Courier Corporation |
Pages | 242 |
Release | 2013-04-22 |
Genre | Mathematics |
ISBN | 0486318672 |
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Analytic Function Theory of Several Variables
Title | Analytic Function Theory of Several Variables PDF eBook |
Author | Junjiro Noguchi |
Publisher | Springer |
Pages | 407 |
Release | 2016-08-16 |
Genre | Mathematics |
ISBN | 9811002916 |
The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); Oka–Cartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving Cartan–Serre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of "Coherence".It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students.
Mathematical Physical Chemistry
Title | Mathematical Physical Chemistry PDF eBook |
Author | Shu Hotta |
Publisher | Springer |
Pages | 629 |
Release | 2018-01-23 |
Genre | Science |
ISBN | 9811076715 |
This book introduces basic concepts of mathematical physics to chemists. Many textbooks and monographs of mathematical physics may appear daunting to them. Unlike other, related books, however, this one contains a practical selection of material, particularly for graduate and undergraduate students majoring in chemistry. The book first describes quantum mechanics and electromagnetism, with the relation between the two being emphasized. Although quantum mechanics covers a broad field in modern physics, the author focuses on a hydrogen(like) atom and a harmonic oscillator with regard to the operator method. This approach helps chemists understand the basic concepts of quantum mechanics aided by their intuitive understanding without abstract argument, as chemists tend to think of natural phenomena and other factors intuitively rather than only logically. The study of light propagation, reflection, and transmission in dielectric media is of fundamental importance. This book explains these processes on the basis of Maxwell equations. The latter half of the volume deals with mathematical physics in terms of vectors and their transformation in a vector space. Finally, as an example of chemical applications, quantum chemical treatment of methane is introduced, including a basic but essential explanation of Green functions and group theory. Methodology developed by the author will also prove to be useful to physicists.
From Divergent Power Series to Analytic Functions
Title | From Divergent Power Series to Analytic Functions PDF eBook |
Author | Werner Balser |
Publisher | Springer |
Pages | 117 |
Release | 2006-11-15 |
Genre | Mathematics |
ISBN | 3540485945 |
Multisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to those who encounter formal power series to (physical) equations with rapidly, but regularly, growing coefficients.