Analysis of Hamiltonian PDEs
Title | Analysis of Hamiltonian PDEs PDF eBook |
Author | Sergej B. Kuksin |
Publisher | Clarendon Press |
Pages | 228 |
Release | 2000 |
Genre | Mathematics |
ISBN | 9780198503958 |
For the last 20-30 years, interest among mathematicians and physicists in infinite-dimensional Hamiltonian systems and Hamiltonian partial differential equations has been growing strongly, and many papers and a number of books have been written on integrable Hamiltonian PDEs. During the last decade though, the interest has shifted steadily towards non-integrable Hamiltonian PDEs. Here, not algebra but analysis and symplectic geometry are the appropriate analysing tools. The present book is the first one to use this approach to Hamiltonian PDEs and present a complete proof of the "KAM for PDEs" theorem. It will be an invaluable source of information for postgraduate mathematics and physics students and researchers.
Nonlinear Oscillations of Hamiltonian PDEs
Title | Nonlinear Oscillations of Hamiltonian PDEs PDF eBook |
Author | Massimiliano Berti |
Publisher | Springer Science & Business Media |
Pages | 191 |
Release | 2007-10-01 |
Genre | Mathematics |
ISBN | 0817646809 |
Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. The text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in variational techniques and nonlinear analysis applied to Hamiltonian PDEs will find inspiration in the book.
Hamiltonian Dynamical Systems and Applications
Title | Hamiltonian Dynamical Systems and Applications PDF eBook |
Author | Walter Craig |
Publisher | Springer Science & Business Media |
Pages | 450 |
Release | 2008-02-17 |
Genre | Mathematics |
ISBN | 1402069642 |
This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.
Hamiltonian Partial Differential Equations and Applications
Title | Hamiltonian Partial Differential Equations and Applications PDF eBook |
Author | Philippe Guyenne |
Publisher | Springer |
Pages | 453 |
Release | 2015-09-11 |
Genre | Mathematics |
ISBN | 149392950X |
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
Functional Analysis, Sobolev Spaces and Partial Differential Equations
Title | Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF eBook |
Author | Haim Brezis |
Publisher | Springer Science & Business Media |
Pages | 600 |
Release | 2010-11-02 |
Genre | Mathematics |
ISBN | 0387709142 |
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Partial Differential Equations and Functional Analysis
Title | Partial Differential Equations and Functional Analysis PDF eBook |
Author | Erik Koelink |
Publisher | Springer Science & Business Media |
Pages | 294 |
Release | 2006-08-18 |
Genre | Mathematics |
ISBN | 3764376015 |
Capturing the state of the art of the interplay between partial differential equations, functional analysis, maximal regularity, and probability theory, this volume was initiated at the Delft conference on the occasion of the retirement of Philippe Clément. It will be of interest to researchers in PDEs and functional analysis.
Hamiltonian Dynamics Theory and Applications
Title | Hamiltonian Dynamics Theory and Applications PDF eBook |
Author | CIME-EMS Summer School ( |
Publisher | Springer Science & Business Media |
Pages | 196 |
Release | 2005 |
Genre | Hamiltonian systems |
ISBN | 9783540240648 |