Analysis of Finite Difference Schemes
Title | Analysis of Finite Difference Schemes PDF eBook |
Author | Boško S. Jovanović |
Publisher | Springer Science & Business Media |
Pages | 416 |
Release | 2013-10-22 |
Genre | Mathematics |
ISBN | 1447154606 |
This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations.
Finite Difference Methods for Ordinary and Partial Differential Equations
Title | Finite Difference Methods for Ordinary and Partial Differential Equations PDF eBook |
Author | Randall J. LeVeque |
Publisher | SIAM |
Pages | 356 |
Release | 2007-01-01 |
Genre | Mathematics |
ISBN | 9780898717839 |
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Finite Difference Schemes and Partial Differential Equations
Title | Finite Difference Schemes and Partial Differential Equations PDF eBook |
Author | John C. Strikwerda |
Publisher | Springer |
Pages | 410 |
Release | 1989-09-28 |
Genre | Juvenile Nonfiction |
ISBN |
Applications of Nonstandard Finite Difference Schemes
Title | Applications of Nonstandard Finite Difference Schemes PDF eBook |
Author | Ronald E. Mickens |
Publisher | World Scientific |
Pages | 268 |
Release | 2000 |
Genre | Mathematics |
ISBN | 9789810241339 |
The main purpose of this book is to provide a concise introduction to the methods and philosophy of constructing nonstandard finite difference schemes and illustrate how such techniques can be applied to several important problems. Chapter I gives an overview of the subject and summarizes previous work. Chapters 2 and 3 consider in detail the construction and numerical implementation of schemes for physical problems involving convection-diffusion-reaction equations, that arise in groundwater pollution and scattering of electromagnetic waves using Maxwell's equations. Chapter 4 examines certain mathematical issues related to the nonstandard discretization of competitive and cooperative models for ecology. The application chapters illustrate well the power of nonstandard methods. In particular, for the same accuracy as obtained by standard techniques, larger step sizes can be used. This volume will satisfy the needs of scientists, engineers, and mathematicians who wish to know how to construct nonstandard schemes and see how these are applied to obtain numerical solutions of the differential equations which arise in the study of nonlinear dynamical systems modeling important physical phenomena.
Finite Difference Methods on Irregular Networks
Title | Finite Difference Methods on Irregular Networks PDF eBook |
Author | Bernd Heinrich |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 212 |
Release | 1987-12-31 |
Genre | Mathematics |
ISBN | 311272089X |
No detailed description available for "Finite Difference Methods on Irregular Networks".
Finite Difference Computing with PDEs
Title | Finite Difference Computing with PDEs PDF eBook |
Author | Hans Petter Langtangen |
Publisher | Springer |
Pages | 522 |
Release | 2017-06-21 |
Genre | Computers |
ISBN | 3319554565 |
This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Nonstandard Finite Difference Schemes: Methodology And Applications
Title | Nonstandard Finite Difference Schemes: Methodology And Applications PDF eBook |
Author | Ronald E Mickens |
Publisher | World Scientific |
Pages | 332 |
Release | 2020-11-11 |
Genre | Mathematics |
ISBN | 981122255X |
This second edition of Nonstandard Finite Difference Models of Differential Equations provides an update on the progress made in both the theory and application of the NSFD methodology during the past two and a half decades. In addition to discussing details related to the determination of the denominator functions and the nonlocal discrete representations of functions of dependent variables, we include many examples illustrating just how this should be done.Of real value to the reader is the inclusion of a chapter listing many exact difference schemes, and a chapter giving NSFD schemes from the research literature. The book emphasizes the critical roles played by the 'principle of dynamic consistency' and the use of sub-equations for the construction of valid NSFD discretizations of differential equations.