Analysis of a Discontinuous Galerkin Method Applied to the Level Set Equation

Analysis of a Discontinuous Galerkin Method Applied to the Level Set Equation
Title Analysis of a Discontinuous Galerkin Method Applied to the Level Set Equation PDF eBook
Author Eva Loch
Publisher
Pages 23
Release 2012
Genre
ISBN

Download Analysis of a Discontinuous Galerkin Method Applied to the Level Set Equation Book in PDF, Epub and Kindle

Discontinuous Galerkin Method

Discontinuous Galerkin Method
Title Discontinuous Galerkin Method PDF eBook
Author Vít Dolejší
Publisher Springer
Pages 575
Release 2015-07-17
Genre Mathematics
ISBN 3319192671

Download Discontinuous Galerkin Method Book in PDF, Epub and Kindle

The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.

Nodal Discontinuous Galerkin Methods

Nodal Discontinuous Galerkin Methods
Title Nodal Discontinuous Galerkin Methods PDF eBook
Author Jan S. Hesthaven
Publisher Springer Science & Business Media
Pages 502
Release 2007-12-20
Genre Mathematics
ISBN 0387720677

Download Nodal Discontinuous Galerkin Methods Book in PDF, Epub and Kindle

This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.

Level Set Methods and Dynamic Implicit Surfaces

Level Set Methods and Dynamic Implicit Surfaces
Title Level Set Methods and Dynamic Implicit Surfaces PDF eBook
Author Stanley Osher
Publisher Springer Science & Business Media
Pages 292
Release 2006-04-06
Genre Mathematics
ISBN 0387227466

Download Level Set Methods and Dynamic Implicit Surfaces Book in PDF, Epub and Kindle

Very hot area with a wide range of applications; Gives complete numerical analysis and recipes, which will enable readers to quickly apply the techniques to real problems; Includes two new techniques pioneered by Osher and Fedkiw; Osher and Fedkiw are internationally well-known researchers in this area

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods
Title Discontinuous Galerkin Methods PDF eBook
Author Bernardo Cockburn
Publisher Springer Science & Business Media
Pages 468
Release 2012-12-06
Genre Mathematics
ISBN 3642597211

Download Discontinuous Galerkin Methods Book in PDF, Epub and Kindle

A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Modeling Shallow Water Flows Using the Discontinuous Galerkin Method

Modeling Shallow Water Flows Using the Discontinuous Galerkin Method
Title Modeling Shallow Water Flows Using the Discontinuous Galerkin Method PDF eBook
Author Abdul A. Khan
Publisher CRC Press
Pages 218
Release 2014-03-03
Genre Science
ISBN 1482226014

Download Modeling Shallow Water Flows Using the Discontinuous Galerkin Method Book in PDF, Epub and Kindle

Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fields of science and engineering, its use for hydraulics has so far been limited to simple cases. The book compares numerical results with laboratory experiments and field data, and includes a set of tests that can be used for a wide range of applications. Provides step-by-step implementation details Presents the different forms in which the shallow water flow equations can be written Places emphasis on the details and modifications required to apply the scheme to real-world flow problems This text enables readers to readily understand and develop an efficient computer simulation model that can be used to model flow, contaminant transport, and other aspects in rivers and coastal environments. It is an ideal resource for practicing environmental engineers and researchers in the area of computational hydraulics and fluid dynamics, and graduate students in computational hydraulics.

Mathematical Analysis and Applications

Mathematical Analysis and Applications
Title Mathematical Analysis and Applications PDF eBook
Author Themistocles M. Rassias
Publisher Springer Nature
Pages 694
Release 2019-12-12
Genre Mathematics
ISBN 3030313395

Download Mathematical Analysis and Applications Book in PDF, Epub and Kindle

An international community of experts scientists comprise the research and survey contributions in this volume which covers a broad spectrum of areas in which analysis plays a central role. Contributions discuss theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. This volume is useful to graduate students and researchers working in mathematics, physics, engineering, and economics.